Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's break down the given mathematical expression step by step and build our final result.
Given the expression:
[tex]\[ 3[\sin x - \cos x]^4 + 6[\sin x + \cos x]^2 + 4[\sin^6 x + \cos^6 x] \][/tex]
### Step-by-Step Evaluation
1. Evaluate the first part: \( 3[\sin x - \cos x]^4 \)
- This expression takes the difference between \(\sin x\) and \(\cos x\), then raises it to the 4th power, and finally multiplies the result by 3.
2. Evaluate the second part: \( 6[\sin x + \cos x]^2 \)
- This expression takes the sum of \(\sin x\) and \(\cos x\), then squares it, and finally multiplies the result by 6.
3. Evaluate the third part: \( 4[\sin^6 x + \cos^6 x] \)
- This expression takes \(\sin x\) and \(\cos x\), raises each to the 6th power, adds these two results, and finally multiplies the sum by 4.
### Putting It All Together
Combining the results from the three parts mentioned above gives us:
[tex]\[ \boxed{3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4\sin^6 x + 4\cos^6 x} \][/tex]
This is the final expression and represents the simplified form of the original problem.
Given the expression:
[tex]\[ 3[\sin x - \cos x]^4 + 6[\sin x + \cos x]^2 + 4[\sin^6 x + \cos^6 x] \][/tex]
### Step-by-Step Evaluation
1. Evaluate the first part: \( 3[\sin x - \cos x]^4 \)
- This expression takes the difference between \(\sin x\) and \(\cos x\), then raises it to the 4th power, and finally multiplies the result by 3.
2. Evaluate the second part: \( 6[\sin x + \cos x]^2 \)
- This expression takes the sum of \(\sin x\) and \(\cos x\), then squares it, and finally multiplies the result by 6.
3. Evaluate the third part: \( 4[\sin^6 x + \cos^6 x] \)
- This expression takes \(\sin x\) and \(\cos x\), raises each to the 6th power, adds these two results, and finally multiplies the sum by 4.
### Putting It All Together
Combining the results from the three parts mentioned above gives us:
[tex]\[ \boxed{3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4\sin^6 x + 4\cos^6 x} \][/tex]
This is the final expression and represents the simplified form of the original problem.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.