Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem of finding the points on the \(y\)-axis that lie on a line perpendicular to a given horizontal line and pass through given points, we need to follow these steps:
1. Identify the Given Information:
- The points given are \((-3.6, 0)\), \((-2, 0)\), \((0, -3.6)\), and \((0, -2)\).
- The \((x, y)\)-coordinates of these points provide the positions relative to the origin.
2. Understand the Characteristics of the Lines:
- The given points \((-3.6, 0)\) and \((-2, 0)\) lie on a horizontal line (y=0), which implies the slope of this line is 0.
- A line perpendicular to a horizontal line has an undefined slope, meaning it is a vertical line.
3. Identify the Perpendicular Line:
- Vertical lines parallel to the \(y\)-axis take the general form \(x = k\), where \(k\) is a constant. Therefore, any vertical line will intersect the \(y\)-axis at any value of y.
4. Identify Points on the \(y\)-axis:
- From the given points, \((0, -3.6)\) and \((0, -2)\) are on the \(y\)-axis because their \(x\)-coordinates are zero. These points lie directly on the vertical line \(x = 0\).
5. Conclusion:
- The points \((0, -3.6)\) and \((0, -2)\) on the \(y\)-axis are the required points that lie on a line perpendicular to the given horizontal line and pass through the given points.
Thus, the points on the [tex]\(y\)[/tex]-axis that are also on the line perpendicular to the given horizontal line passing through the given points are [tex]\((0, -3.6)\)[/tex] and [tex]\((0, -2)\)[/tex].
1. Identify the Given Information:
- The points given are \((-3.6, 0)\), \((-2, 0)\), \((0, -3.6)\), and \((0, -2)\).
- The \((x, y)\)-coordinates of these points provide the positions relative to the origin.
2. Understand the Characteristics of the Lines:
- The given points \((-3.6, 0)\) and \((-2, 0)\) lie on a horizontal line (y=0), which implies the slope of this line is 0.
- A line perpendicular to a horizontal line has an undefined slope, meaning it is a vertical line.
3. Identify the Perpendicular Line:
- Vertical lines parallel to the \(y\)-axis take the general form \(x = k\), where \(k\) is a constant. Therefore, any vertical line will intersect the \(y\)-axis at any value of y.
4. Identify Points on the \(y\)-axis:
- From the given points, \((0, -3.6)\) and \((0, -2)\) are on the \(y\)-axis because their \(x\)-coordinates are zero. These points lie directly on the vertical line \(x = 0\).
5. Conclusion:
- The points \((0, -3.6)\) and \((0, -2)\) on the \(y\)-axis are the required points that lie on a line perpendicular to the given horizontal line and pass through the given points.
Thus, the points on the [tex]\(y\)[/tex]-axis that are also on the line perpendicular to the given horizontal line passing through the given points are [tex]\((0, -3.6)\)[/tex] and [tex]\((0, -2)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.