Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the values of the constants \( p \), \( q \), and \( r \) in the function \( f(x) = p x^2 + q x + r \) given the conditions \( f(0) = 4 \), \( f(-1) = 6 \), and \( f(-2) = 18 \), we follow these steps:
1. Substitute \( x = 0 \) into the function:
[tex]\[ f(0) = p(0)^2 + q(0) + r = r \][/tex]
We know \( f(0) = 4 \), so:
[tex]\[ r = 4 \][/tex]
2. Substitute \( x = -1 \) into the function:
[tex]\[ f(-1) = p(-1)^2 + q(-1) + r = p(1) - q + r = p - q + r \][/tex]
We know \( f(-1) = 6 \), so:
[tex]\[ p - q + r = 6 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ p - q + 4 = 6 \implies p - q = 2 \quad \text{(Equation 1)} \][/tex]
3. Substitute \( x = -2 \) into the function:
[tex]\[ f(-2) = p(-2)^2 + q(-2) + r = p(4) - 2q + r = 4p - 2q + r \][/tex]
We know \( f(-2) = 18 \), so:
[tex]\[ 4p - 2q + r = 18 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ 4p - 2q + 4 = 18 \implies 4p - 2q = 14 \quad \text{(Equation 2)} \][/tex]
4. Solve the system of equations derived from steps 2 and 3:
From Equation 1:
[tex]\[ p - q = 2 \][/tex]
From Equation 2:
[tex]\[ 4p - 2q = 14 \][/tex]
We can solve these equations simultaneously. First, solve Equation 1 for \( p \):
[tex]\[ p = q + 2 \][/tex]
Substitute \( p = q + 2 \) into Equation 2:
[tex]\[ 4(q + 2) - 2q = 14 \][/tex]
Simplify and solve for \( q \):
[tex]\[ 4q + 8 - 2q = 14 \implies 2q + 8 = 14 \implies 2q = 6 \implies q = 3 \][/tex]
5. Find \( p \) using the value of \( q \):
[tex]\[ p = q + 2 = 3 + 2 = 5 \][/tex]
Hence, the values of the constants are:
[tex]\[ p = 5, \quad q = 3, \quad r = 4 \][/tex]
1. Substitute \( x = 0 \) into the function:
[tex]\[ f(0) = p(0)^2 + q(0) + r = r \][/tex]
We know \( f(0) = 4 \), so:
[tex]\[ r = 4 \][/tex]
2. Substitute \( x = -1 \) into the function:
[tex]\[ f(-1) = p(-1)^2 + q(-1) + r = p(1) - q + r = p - q + r \][/tex]
We know \( f(-1) = 6 \), so:
[tex]\[ p - q + r = 6 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ p - q + 4 = 6 \implies p - q = 2 \quad \text{(Equation 1)} \][/tex]
3. Substitute \( x = -2 \) into the function:
[tex]\[ f(-2) = p(-2)^2 + q(-2) + r = p(4) - 2q + r = 4p - 2q + r \][/tex]
We know \( f(-2) = 18 \), so:
[tex]\[ 4p - 2q + r = 18 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ 4p - 2q + 4 = 18 \implies 4p - 2q = 14 \quad \text{(Equation 2)} \][/tex]
4. Solve the system of equations derived from steps 2 and 3:
From Equation 1:
[tex]\[ p - q = 2 \][/tex]
From Equation 2:
[tex]\[ 4p - 2q = 14 \][/tex]
We can solve these equations simultaneously. First, solve Equation 1 for \( p \):
[tex]\[ p = q + 2 \][/tex]
Substitute \( p = q + 2 \) into Equation 2:
[tex]\[ 4(q + 2) - 2q = 14 \][/tex]
Simplify and solve for \( q \):
[tex]\[ 4q + 8 - 2q = 14 \implies 2q + 8 = 14 \implies 2q = 6 \implies q = 3 \][/tex]
5. Find \( p \) using the value of \( q \):
[tex]\[ p = q + 2 = 3 + 2 = 5 \][/tex]
Hence, the values of the constants are:
[tex]\[ p = 5, \quad q = 3, \quad r = 4 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.