Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the limit \(\lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}}\), let's analyze the expression step by step.
### Step 1: Factor and Simplify
Consider the expression:
[tex]\[ \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} \][/tex]
First, let's rewrite \(\sqrt[3]{x}\) as \(x^{1/3}\) and \(\sqrt[5]{x}\) as \(x^{1/5}\). The expression becomes:
[tex]\[ \frac{x^{1/3} - x^{1/5}}{x^{1/3} + x^{1/5}} \][/tex]
### Step 2: Factor Out the Dominant Term
The dominant term in both the numerator and denominator as \(x \to \infty\) is \(x^{1/3}\). Factor \(x^{1/3}\) out from both the numerator and the denominator:
[tex]\[ \frac{x^{1/3} (1 - x^{(1/5 - 1/3)})}{x^{1/3} (1 + x^{(1/5 - 1/3)})} \][/tex]
Notice that \(1/5\) is less than \(1/3\), so \(1/5 - 1/3\) is negative. Let’s simplify the exponent:
[tex]\[ \frac{x^{1/3} (1 - x^{-2/15})}{x^{1/3} (1 + x^{-2/15})} \][/tex]
### Step 3: Cancelling Out x^{1/3}
Now, cancel the common factor of \(x^{1/3}\) from both the numerator and the denominator:
[tex]\[ \frac{1 - x^{-2/15}}{1 + x^{-2/15}} \][/tex]
### Step 4: Evaluate the Limit
As \(x \to \infty\), \(x^{-2/15} \to 0\). Thus, the expression simplifies to:
[tex]\[ \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1 \][/tex]
### Final Answer
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} = 1 \][/tex]
### Step 1: Factor and Simplify
Consider the expression:
[tex]\[ \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} \][/tex]
First, let's rewrite \(\sqrt[3]{x}\) as \(x^{1/3}\) and \(\sqrt[5]{x}\) as \(x^{1/5}\). The expression becomes:
[tex]\[ \frac{x^{1/3} - x^{1/5}}{x^{1/3} + x^{1/5}} \][/tex]
### Step 2: Factor Out the Dominant Term
The dominant term in both the numerator and denominator as \(x \to \infty\) is \(x^{1/3}\). Factor \(x^{1/3}\) out from both the numerator and the denominator:
[tex]\[ \frac{x^{1/3} (1 - x^{(1/5 - 1/3)})}{x^{1/3} (1 + x^{(1/5 - 1/3)})} \][/tex]
Notice that \(1/5\) is less than \(1/3\), so \(1/5 - 1/3\) is negative. Let’s simplify the exponent:
[tex]\[ \frac{x^{1/3} (1 - x^{-2/15})}{x^{1/3} (1 + x^{-2/15})} \][/tex]
### Step 3: Cancelling Out x^{1/3}
Now, cancel the common factor of \(x^{1/3}\) from both the numerator and the denominator:
[tex]\[ \frac{1 - x^{-2/15}}{1 + x^{-2/15}} \][/tex]
### Step 4: Evaluate the Limit
As \(x \to \infty\), \(x^{-2/15} \to 0\). Thus, the expression simplifies to:
[tex]\[ \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1 \][/tex]
### Final Answer
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} = 1 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.