Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the limit \(\lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}}\), let's analyze the expression step by step.
### Step 1: Factor and Simplify
Consider the expression:
[tex]\[ \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} \][/tex]
First, let's rewrite \(\sqrt[3]{x}\) as \(x^{1/3}\) and \(\sqrt[5]{x}\) as \(x^{1/5}\). The expression becomes:
[tex]\[ \frac{x^{1/3} - x^{1/5}}{x^{1/3} + x^{1/5}} \][/tex]
### Step 2: Factor Out the Dominant Term
The dominant term in both the numerator and denominator as \(x \to \infty\) is \(x^{1/3}\). Factor \(x^{1/3}\) out from both the numerator and the denominator:
[tex]\[ \frac{x^{1/3} (1 - x^{(1/5 - 1/3)})}{x^{1/3} (1 + x^{(1/5 - 1/3)})} \][/tex]
Notice that \(1/5\) is less than \(1/3\), so \(1/5 - 1/3\) is negative. Let’s simplify the exponent:
[tex]\[ \frac{x^{1/3} (1 - x^{-2/15})}{x^{1/3} (1 + x^{-2/15})} \][/tex]
### Step 3: Cancelling Out x^{1/3}
Now, cancel the common factor of \(x^{1/3}\) from both the numerator and the denominator:
[tex]\[ \frac{1 - x^{-2/15}}{1 + x^{-2/15}} \][/tex]
### Step 4: Evaluate the Limit
As \(x \to \infty\), \(x^{-2/15} \to 0\). Thus, the expression simplifies to:
[tex]\[ \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1 \][/tex]
### Final Answer
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} = 1 \][/tex]
### Step 1: Factor and Simplify
Consider the expression:
[tex]\[ \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} \][/tex]
First, let's rewrite \(\sqrt[3]{x}\) as \(x^{1/3}\) and \(\sqrt[5]{x}\) as \(x^{1/5}\). The expression becomes:
[tex]\[ \frac{x^{1/3} - x^{1/5}}{x^{1/3} + x^{1/5}} \][/tex]
### Step 2: Factor Out the Dominant Term
The dominant term in both the numerator and denominator as \(x \to \infty\) is \(x^{1/3}\). Factor \(x^{1/3}\) out from both the numerator and the denominator:
[tex]\[ \frac{x^{1/3} (1 - x^{(1/5 - 1/3)})}{x^{1/3} (1 + x^{(1/5 - 1/3)})} \][/tex]
Notice that \(1/5\) is less than \(1/3\), so \(1/5 - 1/3\) is negative. Let’s simplify the exponent:
[tex]\[ \frac{x^{1/3} (1 - x^{-2/15})}{x^{1/3} (1 + x^{-2/15})} \][/tex]
### Step 3: Cancelling Out x^{1/3}
Now, cancel the common factor of \(x^{1/3}\) from both the numerator and the denominator:
[tex]\[ \frac{1 - x^{-2/15}}{1 + x^{-2/15}} \][/tex]
### Step 4: Evaluate the Limit
As \(x \to \infty\), \(x^{-2/15} \to 0\). Thus, the expression simplifies to:
[tex]\[ \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1 \][/tex]
### Final Answer
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} = 1 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.