At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's address each part of the question step-by-step:
### 2.1 Solve for \( x \) and \( y \) using complex numbers:
The given equation is:
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| = \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
We need to evaluate the determinants of both matrices and then equate them.
Left-hand side (LHS):
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x j)(-2) - (y j)(-3) \][/tex]
[tex]\[ = -2x j + 3y j \][/tex]
[tex]\[ = j(-2x + 3y) \][/tex]
Right-hand side (RHS):
[tex]\[ \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x - y)(2) - (j)(-4) \][/tex]
[tex]\[ = 2(x - y) + 4j \][/tex]
Equate the determinants:
[tex]\[ j(-2x + 3y) = 2(x - y) + 4j \][/tex]
Separate the real and imaginary parts:
For imaginary parts:
[tex]\[ -2x + 3y = 4 \][/tex]
For real parts:
[tex]\[ 2(x - y) = 0 \][/tex]
[tex]\[ x - y = 0 \][/tex]
[tex]\[ x = y \][/tex]
Now substitute \( x = y \) into the imaginary parts equation:
[tex]\[ -2x + 3x = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
Since \( x = y \), we also have \( y = 4 \).
Thus, the solutions are:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
### 2.2 Given \( z_1 = 4 \breve{30^{\circ}} \) and \( z_2 = 2 \breve{60^{\circ}} \), determine:
#### 2.2.1 \( z_1 \cdot z_2 \)
To multiply two complex numbers in polar form, we multiply their moduli and add their angles.
- Modulus of \(z_1 \cdot z_2 \):
[tex]\[ |z_1| \cdot |z_2| = 4 \cdot 2 = 8 \][/tex]
- Angle of \(z_1 \cdot z_2 \):
[tex]\[ \arg(z_1) + \arg(z_2) = 30^\circ + 60^\circ = 90^\circ \][/tex]
So:
[tex]\[ z_1 \cdot z_2 = 8 \breve{90^\circ} \][/tex]
#### 2.2.2 \(\frac{z_1}{z_2}\)
To divide two complex numbers in polar form, we divide their moduli and subtract their angles.
- Modulus of \(\frac{z_1}{z_2} \):
[tex]\[ \frac{|z_1|}{|z_2|} = \frac{4}{2} = 2 \][/tex]
- Angle of \(\frac{z_1}{z_2} \):
[tex]\[ \arg(z_1) - \arg(z_2) = 30^\circ - 60^\circ = -30^\circ \][/tex]
So:
[tex]\[ \frac{z_1}{z_2} = 2 \breve{-30^\circ} \][/tex]
In summary:
2.1 Solutions:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
2.2 Solutions:
[tex]\[ \begin{aligned} &2.2.1 \quad z_1 \cdot z_2 = 8 \breve{90^\circ} \\ &2.2.2 \quad \frac{z_1}{z_2} = 2 \breve{-30^\circ} \end{aligned} \][/tex]
### 2.1 Solve for \( x \) and \( y \) using complex numbers:
The given equation is:
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| = \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
We need to evaluate the determinants of both matrices and then equate them.
Left-hand side (LHS):
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x j)(-2) - (y j)(-3) \][/tex]
[tex]\[ = -2x j + 3y j \][/tex]
[tex]\[ = j(-2x + 3y) \][/tex]
Right-hand side (RHS):
[tex]\[ \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x - y)(2) - (j)(-4) \][/tex]
[tex]\[ = 2(x - y) + 4j \][/tex]
Equate the determinants:
[tex]\[ j(-2x + 3y) = 2(x - y) + 4j \][/tex]
Separate the real and imaginary parts:
For imaginary parts:
[tex]\[ -2x + 3y = 4 \][/tex]
For real parts:
[tex]\[ 2(x - y) = 0 \][/tex]
[tex]\[ x - y = 0 \][/tex]
[tex]\[ x = y \][/tex]
Now substitute \( x = y \) into the imaginary parts equation:
[tex]\[ -2x + 3x = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
Since \( x = y \), we also have \( y = 4 \).
Thus, the solutions are:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
### 2.2 Given \( z_1 = 4 \breve{30^{\circ}} \) and \( z_2 = 2 \breve{60^{\circ}} \), determine:
#### 2.2.1 \( z_1 \cdot z_2 \)
To multiply two complex numbers in polar form, we multiply their moduli and add their angles.
- Modulus of \(z_1 \cdot z_2 \):
[tex]\[ |z_1| \cdot |z_2| = 4 \cdot 2 = 8 \][/tex]
- Angle of \(z_1 \cdot z_2 \):
[tex]\[ \arg(z_1) + \arg(z_2) = 30^\circ + 60^\circ = 90^\circ \][/tex]
So:
[tex]\[ z_1 \cdot z_2 = 8 \breve{90^\circ} \][/tex]
#### 2.2.2 \(\frac{z_1}{z_2}\)
To divide two complex numbers in polar form, we divide their moduli and subtract their angles.
- Modulus of \(\frac{z_1}{z_2} \):
[tex]\[ \frac{|z_1|}{|z_2|} = \frac{4}{2} = 2 \][/tex]
- Angle of \(\frac{z_1}{z_2} \):
[tex]\[ \arg(z_1) - \arg(z_2) = 30^\circ - 60^\circ = -30^\circ \][/tex]
So:
[tex]\[ \frac{z_1}{z_2} = 2 \breve{-30^\circ} \][/tex]
In summary:
2.1 Solutions:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
2.2 Solutions:
[tex]\[ \begin{aligned} &2.2.1 \quad z_1 \cdot z_2 = 8 \breve{90^\circ} \\ &2.2.2 \quad \frac{z_1}{z_2} = 2 \breve{-30^\circ} \end{aligned} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.