Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To compute the sample variance and standard deviation of the given data sample, we will go through the following steps:
### Data Sample:
[tex]\[ 2, -3.8, 2.3, -0.7, -0.7 \][/tex]
### Step 1: Calculate the Mean
First, we calculate the mean (average) of the data points.
[tex]\[ \text{Mean} = \frac{2 + (-3.8) + 2.3 + (-0.7) + (-0.7)}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{2 - 3.8 + 2.3 - 0.7 - 0.7}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{-1.9}{5} \][/tex]
[tex]\[ \text{Mean} = -0.38 \][/tex]
### Step 2: Calculate Deviations from the Mean
Next, we find the deviation of each data point from the mean, square these deviations, and then sum them up.
[tex]\[ \begin{aligned} & \text{Deviation for } 2: (2 - (-0.38))^2 = (2 + 0.38)^2 = 2.38^2 \\ & \text{Deviation for } -3.8: (-3.8 - (-0.38))^2 = (-3.8 + 0.38)^2 = (-3.42)^2 \\ & \text{Deviation for } 2.3: (2.3 - (-0.38))^2 = (2.3 + 0.38)^2 = 2.68^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ \end{aligned} \][/tex]
Perform the calculations:
[tex]\[ \begin{aligned} & 2.38^2 = 5.6644 \\ & (-3.42)^2 = 11.6964 \\ & 2.68^2 = 7.1824 \\ & (-0.32)^2 = 0.1024 \\ & (-0.32)^2 = 0.1024 \\ \end{aligned} \][/tex]
Now sum these squared deviations:
[tex]\[ 5.6644 + 11.6964 + 7.1824 + 0.1024 + 0.1024 = 24.748 \][/tex]
### Step 3: Compute the Sample Variance
The sample variance is calculated by dividing this sum by the number of data points minus one. Here, our sample size \( n = 5 \).
[tex]\[ \text{Sample Variance} = \frac{24.748}{5 - 1} \][/tex]
[tex]\[ \text{Sample Variance} = \frac{24.748}{4} \][/tex]
[tex]\[ \text{Sample Variance} = 6.187 \][/tex]
### Step 4: Compute the Standard Deviation
The standard deviation is the square root of the sample variance.
[tex]\[ \text{Standard Deviation} = \sqrt{6.187} \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.487 \][/tex]
### Step 5: Round to Two Decimal Places
Finally, we round the sample variance and standard deviation to two decimal places.
[tex]\[ \text{Sample Variance} \approx 6.14 \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.48 \][/tex]
### Results
Variance \( \square \) = \( 6.14 \)
Standard Deviation [tex]\( \square \)[/tex] = [tex]\( 2.48 \)[/tex]
### Data Sample:
[tex]\[ 2, -3.8, 2.3, -0.7, -0.7 \][/tex]
### Step 1: Calculate the Mean
First, we calculate the mean (average) of the data points.
[tex]\[ \text{Mean} = \frac{2 + (-3.8) + 2.3 + (-0.7) + (-0.7)}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{2 - 3.8 + 2.3 - 0.7 - 0.7}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{-1.9}{5} \][/tex]
[tex]\[ \text{Mean} = -0.38 \][/tex]
### Step 2: Calculate Deviations from the Mean
Next, we find the deviation of each data point from the mean, square these deviations, and then sum them up.
[tex]\[ \begin{aligned} & \text{Deviation for } 2: (2 - (-0.38))^2 = (2 + 0.38)^2 = 2.38^2 \\ & \text{Deviation for } -3.8: (-3.8 - (-0.38))^2 = (-3.8 + 0.38)^2 = (-3.42)^2 \\ & \text{Deviation for } 2.3: (2.3 - (-0.38))^2 = (2.3 + 0.38)^2 = 2.68^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ \end{aligned} \][/tex]
Perform the calculations:
[tex]\[ \begin{aligned} & 2.38^2 = 5.6644 \\ & (-3.42)^2 = 11.6964 \\ & 2.68^2 = 7.1824 \\ & (-0.32)^2 = 0.1024 \\ & (-0.32)^2 = 0.1024 \\ \end{aligned} \][/tex]
Now sum these squared deviations:
[tex]\[ 5.6644 + 11.6964 + 7.1824 + 0.1024 + 0.1024 = 24.748 \][/tex]
### Step 3: Compute the Sample Variance
The sample variance is calculated by dividing this sum by the number of data points minus one. Here, our sample size \( n = 5 \).
[tex]\[ \text{Sample Variance} = \frac{24.748}{5 - 1} \][/tex]
[tex]\[ \text{Sample Variance} = \frac{24.748}{4} \][/tex]
[tex]\[ \text{Sample Variance} = 6.187 \][/tex]
### Step 4: Compute the Standard Deviation
The standard deviation is the square root of the sample variance.
[tex]\[ \text{Standard Deviation} = \sqrt{6.187} \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.487 \][/tex]
### Step 5: Round to Two Decimal Places
Finally, we round the sample variance and standard deviation to two decimal places.
[tex]\[ \text{Sample Variance} \approx 6.14 \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.48 \][/tex]
### Results
Variance \( \square \) = \( 6.14 \)
Standard Deviation [tex]\( \square \)[/tex] = [tex]\( 2.48 \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.