Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Compute the (sample) variance and standard deviation of the data sample. (Round your answers to two decimal places.)

[tex] 2, -3.8, 2.3, -0.7, -0.7 [/tex]

Variance: [tex] \square [/tex]

Standard Deviation: [tex] \square [/tex]

Sagot :

To compute the sample variance and standard deviation of the given data sample, we will go through the following steps:

### Data Sample:
[tex]\[ 2, -3.8, 2.3, -0.7, -0.7 \][/tex]

### Step 1: Calculate the Mean
First, we calculate the mean (average) of the data points.

[tex]\[ \text{Mean} = \frac{2 + (-3.8) + 2.3 + (-0.7) + (-0.7)}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{2 - 3.8 + 2.3 - 0.7 - 0.7}{5} \][/tex]
[tex]\[ \text{Mean} = \frac{-1.9}{5} \][/tex]
[tex]\[ \text{Mean} = -0.38 \][/tex]

### Step 2: Calculate Deviations from the Mean
Next, we find the deviation of each data point from the mean, square these deviations, and then sum them up.

[tex]\[ \begin{aligned} & \text{Deviation for } 2: (2 - (-0.38))^2 = (2 + 0.38)^2 = 2.38^2 \\ & \text{Deviation for } -3.8: (-3.8 - (-0.38))^2 = (-3.8 + 0.38)^2 = (-3.42)^2 \\ & \text{Deviation for } 2.3: (2.3 - (-0.38))^2 = (2.3 + 0.38)^2 = 2.68^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ & \text{Deviation for } -0.7: (-0.7 - (-0.38))^2 = (-0.7 + 0.38)^2 = (-0.32)^2 \\ \end{aligned} \][/tex]

Perform the calculations:

[tex]\[ \begin{aligned} & 2.38^2 = 5.6644 \\ & (-3.42)^2 = 11.6964 \\ & 2.68^2 = 7.1824 \\ & (-0.32)^2 = 0.1024 \\ & (-0.32)^2 = 0.1024 \\ \end{aligned} \][/tex]

Now sum these squared deviations:

[tex]\[ 5.6644 + 11.6964 + 7.1824 + 0.1024 + 0.1024 = 24.748 \][/tex]

### Step 3: Compute the Sample Variance
The sample variance is calculated by dividing this sum by the number of data points minus one. Here, our sample size \( n = 5 \).

[tex]\[ \text{Sample Variance} = \frac{24.748}{5 - 1} \][/tex]
[tex]\[ \text{Sample Variance} = \frac{24.748}{4} \][/tex]
[tex]\[ \text{Sample Variance} = 6.187 \][/tex]

### Step 4: Compute the Standard Deviation
The standard deviation is the square root of the sample variance.

[tex]\[ \text{Standard Deviation} = \sqrt{6.187} \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.487 \][/tex]

### Step 5: Round to Two Decimal Places
Finally, we round the sample variance and standard deviation to two decimal places.

[tex]\[ \text{Sample Variance} \approx 6.14 \][/tex]
[tex]\[ \text{Standard Deviation} \approx 2.48 \][/tex]

### Results
Variance \( \square \) = \( 6.14 \)

Standard Deviation [tex]\( \square \)[/tex] = [tex]\( 2.48 \)[/tex]