Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To calculate the standard deviation \(\sigma\) of \(X\) for the given probability distribution, follow these steps:
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.