Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To calculate the standard deviation \(\sigma\) of \(X\) for the given probability distribution, follow these steps:
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.