At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given quadratic equations has the sum of its roots equal to 4, we can use a property of quadratic equations. For a quadratic equation of the form \(ax^2 + bx + c = 0\), the sum of the roots (\( \alpha + \beta \)) is given by \( -\frac{b}{a} \).
Let's analyze each equation one-by-one to find the sum of the roots:
(a) \( 2x^2 - 4x + 8 = 0 \)
For this equation:
- \( a = 2 \)
- \( b = -4 \)
- The sum of the roots is \( \frac{-(-4)}{2} = \frac{4}{2} = 2.0 \)
(b) \( -x^2 + 4x + 4 = 0 \)
For this equation:
- \( a = -1 \)
- \( b = 4 \)
- The sum of the roots is \( \frac{-(4)}{-1} = \frac{-4}{-1} = 4.0 \)
(c) \( -\sqrt{2}x^2 - \frac{4}{\sqrt{2}}x + 1 = 0 \)
For this equation:
- \( a = -\sqrt{2} \)
- \( b = -\frac{4}{\sqrt{2}} \)
- The sum of the roots is \( \frac{-(-\frac{4}{\sqrt{2}})}{-\sqrt{2}} = \frac{\frac{4}{\sqrt{2}}}{-\sqrt{2}} = -2.0 \)
(d) \( 4x^2 - 4x + 4 = 0 \)
For this equation:
- \( a = 4 \)
- \( b = -4 \)
- The sum of the roots is \( \frac{-(-4)}{4} = \frac{4}{4} = 1.0 \)
After calculating the sum of the roots for each equation, we see that the quadratic equation in option (b), which is \( -x^2 + 4x + 4 = 0 \), has a sum of its roots equal to 4. Therefore, the correct answer is:
(b) [tex]\( -x^2 + 4x + 4 = 0 \)[/tex]
Let's analyze each equation one-by-one to find the sum of the roots:
(a) \( 2x^2 - 4x + 8 = 0 \)
For this equation:
- \( a = 2 \)
- \( b = -4 \)
- The sum of the roots is \( \frac{-(-4)}{2} = \frac{4}{2} = 2.0 \)
(b) \( -x^2 + 4x + 4 = 0 \)
For this equation:
- \( a = -1 \)
- \( b = 4 \)
- The sum of the roots is \( \frac{-(4)}{-1} = \frac{-4}{-1} = 4.0 \)
(c) \( -\sqrt{2}x^2 - \frac{4}{\sqrt{2}}x + 1 = 0 \)
For this equation:
- \( a = -\sqrt{2} \)
- \( b = -\frac{4}{\sqrt{2}} \)
- The sum of the roots is \( \frac{-(-\frac{4}{\sqrt{2}})}{-\sqrt{2}} = \frac{\frac{4}{\sqrt{2}}}{-\sqrt{2}} = -2.0 \)
(d) \( 4x^2 - 4x + 4 = 0 \)
For this equation:
- \( a = 4 \)
- \( b = -4 \)
- The sum of the roots is \( \frac{-(-4)}{4} = \frac{4}{4} = 1.0 \)
After calculating the sum of the roots for each equation, we see that the quadratic equation in option (b), which is \( -x^2 + 4x + 4 = 0 \), has a sum of its roots equal to 4. Therefore, the correct answer is:
(b) [tex]\( -x^2 + 4x + 4 = 0 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.