At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the locus of points that are equidistant from points \( A(-2, 3) \) and \( B(6, -5) \), we need to determine the perpendicular bisector of the line segment joining these two points.
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.