At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the locus of points that are equidistant from points \( A(-2, 3) \) and \( B(6, -5) \), we need to determine the perpendicular bisector of the line segment joining these two points.
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.