Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the equation of a line parallel to a given line that has an \( x \)-intercept of 4, we need to follow these steps:
1. Equation of the original line:
The original line is provided in the standard form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
2. Parallel line characteristics:
Parallel lines have the same slope (\( m \)). Therefore, the new line will have the same slope as the original line.
3. Determining the new line's intercept:
For our new line with an \( x \)-intercept of 4, by definition, the \( x \)-intercept is the point where the line crosses the x-axis (\( y = 0 \)). Hence, if we substitute \( x = 4 \) into the line's equation, we should get \( y = 0 \).
4. Finding the y-intercept (b):
Let's generalize the equation of the new line as \( y = mx + b \). Since we know it intercepts the x-axis at \( x = 4 \):
[tex]\[ 0 = m \cdot 4 + b \][/tex]
Solving for \( b \):
[tex]\[ 0 = 4m + b \implies b = -4m \][/tex]
Now, substituting \( b = -4m \) back into the line equation \( y = mx + b \), we get:
[tex]\[ y = mx - 4m \][/tex]
However, when we rewrite the final equation, the standard way to express a line equation is simplified based on the given information. If our aim is to find \( x \)- and \( y \)-coordinates where \( y = 0 \):
The final simplified form of any line parallel to the original line with an \( x \)-intercept of 4 will point to \( y = 0 \).
The resulting equation based on these steps is:
[tex]\[ y = 0 \][/tex]
1. Equation of the original line:
The original line is provided in the standard form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
2. Parallel line characteristics:
Parallel lines have the same slope (\( m \)). Therefore, the new line will have the same slope as the original line.
3. Determining the new line's intercept:
For our new line with an \( x \)-intercept of 4, by definition, the \( x \)-intercept is the point where the line crosses the x-axis (\( y = 0 \)). Hence, if we substitute \( x = 4 \) into the line's equation, we should get \( y = 0 \).
4. Finding the y-intercept (b):
Let's generalize the equation of the new line as \( y = mx + b \). Since we know it intercepts the x-axis at \( x = 4 \):
[tex]\[ 0 = m \cdot 4 + b \][/tex]
Solving for \( b \):
[tex]\[ 0 = 4m + b \implies b = -4m \][/tex]
Now, substituting \( b = -4m \) back into the line equation \( y = mx + b \), we get:
[tex]\[ y = mx - 4m \][/tex]
However, when we rewrite the final equation, the standard way to express a line equation is simplified based on the given information. If our aim is to find \( x \)- and \( y \)-coordinates where \( y = 0 \):
The final simplified form of any line parallel to the original line with an \( x \)-intercept of 4 will point to \( y = 0 \).
The resulting equation based on these steps is:
[tex]\[ y = 0 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.