Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equation of a line parallel to a given line that has an \( x \)-intercept of 4, we need to follow these steps:
1. Equation of the original line:
The original line is provided in the standard form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
2. Parallel line characteristics:
Parallel lines have the same slope (\( m \)). Therefore, the new line will have the same slope as the original line.
3. Determining the new line's intercept:
For our new line with an \( x \)-intercept of 4, by definition, the \( x \)-intercept is the point where the line crosses the x-axis (\( y = 0 \)). Hence, if we substitute \( x = 4 \) into the line's equation, we should get \( y = 0 \).
4. Finding the y-intercept (b):
Let's generalize the equation of the new line as \( y = mx + b \). Since we know it intercepts the x-axis at \( x = 4 \):
[tex]\[ 0 = m \cdot 4 + b \][/tex]
Solving for \( b \):
[tex]\[ 0 = 4m + b \implies b = -4m \][/tex]
Now, substituting \( b = -4m \) back into the line equation \( y = mx + b \), we get:
[tex]\[ y = mx - 4m \][/tex]
However, when we rewrite the final equation, the standard way to express a line equation is simplified based on the given information. If our aim is to find \( x \)- and \( y \)-coordinates where \( y = 0 \):
The final simplified form of any line parallel to the original line with an \( x \)-intercept of 4 will point to \( y = 0 \).
The resulting equation based on these steps is:
[tex]\[ y = 0 \][/tex]
1. Equation of the original line:
The original line is provided in the standard form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
2. Parallel line characteristics:
Parallel lines have the same slope (\( m \)). Therefore, the new line will have the same slope as the original line.
3. Determining the new line's intercept:
For our new line with an \( x \)-intercept of 4, by definition, the \( x \)-intercept is the point where the line crosses the x-axis (\( y = 0 \)). Hence, if we substitute \( x = 4 \) into the line's equation, we should get \( y = 0 \).
4. Finding the y-intercept (b):
Let's generalize the equation of the new line as \( y = mx + b \). Since we know it intercepts the x-axis at \( x = 4 \):
[tex]\[ 0 = m \cdot 4 + b \][/tex]
Solving for \( b \):
[tex]\[ 0 = 4m + b \implies b = -4m \][/tex]
Now, substituting \( b = -4m \) back into the line equation \( y = mx + b \), we get:
[tex]\[ y = mx - 4m \][/tex]
However, when we rewrite the final equation, the standard way to express a line equation is simplified based on the given information. If our aim is to find \( x \)- and \( y \)-coordinates where \( y = 0 \):
The final simplified form of any line parallel to the original line with an \( x \)-intercept of 4 will point to \( y = 0 \).
The resulting equation based on these steps is:
[tex]\[ y = 0 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.