Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the accurate ranking of the waves from the lowest energy wave to the highest energy wave, we need to understand how wave energy is calculated. The energy \( E \) of a wave is proportional to the square of its amplitude \( A \). In simpler terms, if we know a wave's amplitude, we can compute its energy using the formula:
[tex]\[ E = A^2 \][/tex]
Let's analyze the information provided for each wave in the table and calculate their energies step-by-step:
1. Wave 1:
- Given amplitude: \(3 \, cm\)
- Energy: \( E_1 = 3^2 = 9 \, (cm^2) \)
2. Wave 2:
- Given distance from the midpoint to the crest: \(6 \, cm\)
- This distance is the amplitude of the wave.
- Energy: \( E_2 = 6^2 = 36 \, (cm^2) \)
3. Wave 3:
- Given distance from the midpoint to the trough: \(12 \, cm\)
- The distance from the midpoint to the trough is the amplitude of the wave.
- Energy: \( E_3 = 12^2 = 144 \, (cm^2) \)
4. Wave 4:
- Given amplitude: \(4 \, cm\)
- Energy: \( E_4 = 4^2 = 16 \, (cm^2) \)
Now, let's list the calculated energies for each wave:
- Wave 1: \(9 \, (cm^2)\)
- Wave 2: \(36 \, (cm^2)\)
- Wave 3: \(144 \, (cm^2)\)
- Wave 4: \(16 \, (cm^2)\)
To rank the waves from the lowest energy to the highest energy, we sort the energies in ascending order:
- \(9 \, (cm^2)\) (Wave 1)
- \(16 \, (cm^2)\) (Wave 4)
- \(36 \, (cm^2)\) (Wave 2)
- \(144 \, (cm^2)\) (Wave 3)
Thus, the correct ranking of the waves from the lowest energy to the highest energy is:
[tex]\[ 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \][/tex]
Therefore, the last option,
[tex]\[ 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \][/tex]
is the accurate ranking of the waves based on their energies.
[tex]\[ E = A^2 \][/tex]
Let's analyze the information provided for each wave in the table and calculate their energies step-by-step:
1. Wave 1:
- Given amplitude: \(3 \, cm\)
- Energy: \( E_1 = 3^2 = 9 \, (cm^2) \)
2. Wave 2:
- Given distance from the midpoint to the crest: \(6 \, cm\)
- This distance is the amplitude of the wave.
- Energy: \( E_2 = 6^2 = 36 \, (cm^2) \)
3. Wave 3:
- Given distance from the midpoint to the trough: \(12 \, cm\)
- The distance from the midpoint to the trough is the amplitude of the wave.
- Energy: \( E_3 = 12^2 = 144 \, (cm^2) \)
4. Wave 4:
- Given amplitude: \(4 \, cm\)
- Energy: \( E_4 = 4^2 = 16 \, (cm^2) \)
Now, let's list the calculated energies for each wave:
- Wave 1: \(9 \, (cm^2)\)
- Wave 2: \(36 \, (cm^2)\)
- Wave 3: \(144 \, (cm^2)\)
- Wave 4: \(16 \, (cm^2)\)
To rank the waves from the lowest energy to the highest energy, we sort the energies in ascending order:
- \(9 \, (cm^2)\) (Wave 1)
- \(16 \, (cm^2)\) (Wave 4)
- \(36 \, (cm^2)\) (Wave 2)
- \(144 \, (cm^2)\) (Wave 3)
Thus, the correct ranking of the waves from the lowest energy to the highest energy is:
[tex]\[ 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \][/tex]
Therefore, the last option,
[tex]\[ 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \][/tex]
is the accurate ranking of the waves based on their energies.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.