Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the inequality \( 5 - 2x > x + 2 \) step-by-step.
### Step 1: Move all terms involving \( x \) to one side of the inequality and constants to the other side.
Start with the inequality:
[tex]\[ 5 - 2x > x + 2 \][/tex]
Subtract \( x \) from both sides to start isolating \( x \):
[tex]\[ 5 - 2x - x > 2 \][/tex]
Simplify:
[tex]\[ 5 - 3x > 2 \][/tex]
### Step 2: Isolate the variable \( x \).
Subtract 5 from both sides to move the constant terms to the right side:
[tex]\[ 5 - 5 - 3x > 2 - 5 \][/tex]
Simplify:
[tex]\[ -3x > -3 \][/tex]
### Step 3: Solve for \( x \).
To isolate \( x \), divide both sides of the inequality by \(-3\). Recall that dividing by a negative number reverses the inequality sign:
[tex]\[ x < 1 \][/tex]
So the solution to the inequality is:
[tex]\[ x < 1 \][/tex]
### Step 4: Illustrate the result on the number line.
To illustrate the solution on a number line:
- Draw a number line.
- Mark a point at \( x = 1 \).
- Since \( x \) is less than 1 (but not equal to 1), use an open circle at \( x = 1 \).
- Shade the number line to the left of \( x = 1 \), indicating all real numbers less than 1.
The solution set in interval notation is:
[tex]\[ (-\infty, 1) \][/tex]
This means that any real number less than 1 is a solution to the inequality [tex]\( 5 - 2x > x + 2 \)[/tex].
### Step 1: Move all terms involving \( x \) to one side of the inequality and constants to the other side.
Start with the inequality:
[tex]\[ 5 - 2x > x + 2 \][/tex]
Subtract \( x \) from both sides to start isolating \( x \):
[tex]\[ 5 - 2x - x > 2 \][/tex]
Simplify:
[tex]\[ 5 - 3x > 2 \][/tex]
### Step 2: Isolate the variable \( x \).
Subtract 5 from both sides to move the constant terms to the right side:
[tex]\[ 5 - 5 - 3x > 2 - 5 \][/tex]
Simplify:
[tex]\[ -3x > -3 \][/tex]
### Step 3: Solve for \( x \).
To isolate \( x \), divide both sides of the inequality by \(-3\). Recall that dividing by a negative number reverses the inequality sign:
[tex]\[ x < 1 \][/tex]
So the solution to the inequality is:
[tex]\[ x < 1 \][/tex]
### Step 4: Illustrate the result on the number line.
To illustrate the solution on a number line:
- Draw a number line.
- Mark a point at \( x = 1 \).
- Since \( x \) is less than 1 (but not equal to 1), use an open circle at \( x = 1 \).
- Shade the number line to the left of \( x = 1 \), indicating all real numbers less than 1.
The solution set in interval notation is:
[tex]\[ (-\infty, 1) \][/tex]
This means that any real number less than 1 is a solution to the inequality [tex]\( 5 - 2x > x + 2 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.