At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the probability of 5 cars waiting in line, we need to follow these steps:
1. Calculate the total frequency of all cars:
The given data shows the number of cars waiting at the bank and their respective frequencies over a 60-minute period.
[tex]\[ \text{Total frequency} = 2 + 9 + 16 + 12 + 8 + 6 + 4 + 2 + 1 \][/tex]
2. Identify the frequency of 5 cars waiting:
From the table, the frequency of 5 cars waiting is 6.
3. Calculate the probability:
The probability of an event is the ratio of the frequency of the event to the total frequency of all events.
[tex]\[ P(5 \text{ cars}) = \frac{\text{Frequency of 5 cars}}{\text{Total frequency}} \][/tex]
4. Substitute the values:
Using the calculated total frequency and the given frequency:
[tex]\[ \text{Total frequency} = 60 \][/tex]
[tex]\[ \text{Frequency of 5 cars} = 6 \][/tex]
[tex]\[ P(5 \text{ cars}) = \frac{6}{60} \][/tex]
5. Simplify the fraction:
[tex]\[ P(5 \text{ cars}) = \frac{6}{60} = 0.1 \][/tex]
Thus, the probability of 5 cars waiting in line is
[tex]\[ P(5) = 0.1 \][/tex]
1. Calculate the total frequency of all cars:
The given data shows the number of cars waiting at the bank and their respective frequencies over a 60-minute period.
[tex]\[ \text{Total frequency} = 2 + 9 + 16 + 12 + 8 + 6 + 4 + 2 + 1 \][/tex]
2. Identify the frequency of 5 cars waiting:
From the table, the frequency of 5 cars waiting is 6.
3. Calculate the probability:
The probability of an event is the ratio of the frequency of the event to the total frequency of all events.
[tex]\[ P(5 \text{ cars}) = \frac{\text{Frequency of 5 cars}}{\text{Total frequency}} \][/tex]
4. Substitute the values:
Using the calculated total frequency and the given frequency:
[tex]\[ \text{Total frequency} = 60 \][/tex]
[tex]\[ \text{Frequency of 5 cars} = 6 \][/tex]
[tex]\[ P(5 \text{ cars}) = \frac{6}{60} \][/tex]
5. Simplify the fraction:
[tex]\[ P(5 \text{ cars}) = \frac{6}{60} = 0.1 \][/tex]
Thus, the probability of 5 cars waiting in line is
[tex]\[ P(5) = 0.1 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.