Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Given the problem, we need to determine the number of ways to arrange 4 books out of 8 on a shelf. This is a permutation problem because the order in which the books are arranged matters.
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.