Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given the problem, we need to determine the number of ways to arrange 4 books out of 8 on a shelf. This is a permutation problem because the order in which the books are arranged matters.
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.