Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

If [tex]$f(x) = x + 8[tex]$[/tex] and [tex]$[/tex]g(x) = -4x - 3[tex]$[/tex], find [tex]$[/tex](f - g)(x)$[/tex].

Sagot :

To solve for \( (f - g)(x) \) given the functions \( f(x) = x + 8 \) and \( g(x) = -4x - 3 \), follow these steps:

1. Express \( (f - g)(x) \) in terms of \( f(x) \) and \( g(x) \):
[tex]\[ (f - g)(x) = f(x) - g(x) \][/tex]

2. Substitute the given functions \( f(x) \) and \( g(x) \) into the expression:
[tex]\[ (f - g)(x) = (x + 8) - (-4x - 3) \][/tex]

3. Simplify the expression by distributing the negative sign and combining like terms:
[tex]\[ (f - g)(x) = x + 8 + 4x + 3 \][/tex]

4. Combine the \( x \) terms and the constant terms:
[tex]\[ (f - g)(x) = (x + 4x) + (8 + 3) \][/tex]
[tex]\[ (f - g)(x) = 5x + 11 \][/tex]

So, the function \( (f - g)(x) \) is:
[tex]\[ (f - g)(x) = 5x + 11 \][/tex]