Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

To which point should the origin be shifted in order to eliminate the first-degree terms in the equation [tex]2x^2 - 3y^2 - 12x + 18y - 4 = 0[/tex]?

1) [tex](-3, -3)[/tex]
2) [tex](3, 3)[/tex]
3) [tex](-3, 3)[/tex]
4) [tex](3, -3)[/tex]

Sagot :

To determine to which point the origin should be shifted in order to eliminate the first-degree terms in the equation \(2x^2 - 3y^2 - 12x + 18y - 4 = 0\), follow these steps:

1. Identify the first-degree terms: The terms involving \(x\) and \(y\) are \(-12x\) and \(18y\).

2. Complete the square for the \(x\)-terms:
[tex]\[ 2x^2 - 12x \text{ is part of the expression. Factor out the 2: } 2(x^2 - 6x) \][/tex]
To complete the square:
[tex]\[ x^2 - 6x \text{ can be written as } (x-3)^2 - 9: \][/tex]
Hence, we have:
[tex]\[ 2(x^2 - 6x) = 2((x-3)^2 - 9) = 2(x-3)^2 - 18 \][/tex]

3. Complete the square for the \(y\)-terms:
[tex]\[ -3y^2 + 18y \text{ is part of the expression. Factor out the -3: } -3(y^2 - 6y) \][/tex]
To complete the square:
[tex]\[ y^2 - 6y \text{ can be written as } (y-3)^2 - 9: \][/tex]
Hence, we have:
[tex]\[ -3(y^2 - 6y) = -3((y-3)^2 - 9) = -3(y-3)^2 + 27 \][/tex]

4. Substitute the completed squares back into the original equation:
[tex]\[ 2(x - 3)^2 - 18 - 3(y - 3)^2 + 27 - 4 = 0 \][/tex]

5. Simplify the equation:
[tex]\[ 2(x - 3)^2 - 3(y - 3)^2 + 5 = 0 \][/tex]

Given this form, the first-degree terms have been successfully eliminated, and the equation is now centered around the point \( (3, 3) \).

Thus, the origin should be shifted to [tex]\(\boxed{(3, 3)}\)[/tex].