At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's walk through the given question step-by-step to find the probability that both events (A and B) will occur.
### Step 1: Determine the Probability of Event A
Event A is defined as the coin landing on tails.
Since a fair coin has two sides (heads and tails), the probability of the coin landing on tails (Event A) can be calculated as:
[tex]\[ P(A) = \frac{1}{2} \][/tex]
### Step 2: Determine the Probability of Event B
Event B is defined as the die landing on either a 4 or a 5.
A fair six-sided die has six faces numbered 1 through 6. The favorable outcomes for Event B are landing on 4 or 5. There are 2 favorable outcomes (4 and 5) out of the 6 possible outcomes when rolling the die. Therefore, the probability of Event B can be calculated as:
[tex]\[ P(B) = \frac{2}{6} = \frac{1}{3} \][/tex]
### Step 3: Determine the Probability of Both Events Occurring
Since the coin toss and the die roll are independent events, the probability of both events occurring together (both A and B) is the product of the individual probabilities of each event.
Using the formula for the probability of independent events:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
Substituting the probabilities we found:
[tex]\[ P(A \text{ and } B) = \left( \frac{1}{2} \right) \cdot \left( \frac{1}{3} \right) \][/tex]
### Step 4: Calculate the Result
[tex]\[ P(A \text{ and } B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \][/tex]
### Final Answer
The probability that both events (the coin lands on tails and the die lands on 4 or 5) will occur is:
[tex]\[ \boxed{\frac{1}{6}} \][/tex]
### Step 1: Determine the Probability of Event A
Event A is defined as the coin landing on tails.
Since a fair coin has two sides (heads and tails), the probability of the coin landing on tails (Event A) can be calculated as:
[tex]\[ P(A) = \frac{1}{2} \][/tex]
### Step 2: Determine the Probability of Event B
Event B is defined as the die landing on either a 4 or a 5.
A fair six-sided die has six faces numbered 1 through 6. The favorable outcomes for Event B are landing on 4 or 5. There are 2 favorable outcomes (4 and 5) out of the 6 possible outcomes when rolling the die. Therefore, the probability of Event B can be calculated as:
[tex]\[ P(B) = \frac{2}{6} = \frac{1}{3} \][/tex]
### Step 3: Determine the Probability of Both Events Occurring
Since the coin toss and the die roll are independent events, the probability of both events occurring together (both A and B) is the product of the individual probabilities of each event.
Using the formula for the probability of independent events:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
Substituting the probabilities we found:
[tex]\[ P(A \text{ and } B) = \left( \frac{1}{2} \right) \cdot \left( \frac{1}{3} \right) \][/tex]
### Step 4: Calculate the Result
[tex]\[ P(A \text{ and } B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \][/tex]
### Final Answer
The probability that both events (the coin lands on tails and the die lands on 4 or 5) will occur is:
[tex]\[ \boxed{\frac{1}{6}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.