At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's find the probability that both Event A and Event B will occur step by step.
### Step 1: Determine the Probability of Event A
Event A is that the coin lands on tails. For a fair coin, there are two equally likely outcomes: heads and tails.
- The probability of the coin landing on tails is:
[tex]\[ P(A) = \frac{1}{2} = 0.5 \][/tex]
### Step 2: Determine the Probability of Event B
Event B is that the six-sided die does not land on a 1. There are six possible outcomes when rolling a die: 1, 2, 3, 4, 5, and 6. Out of these six outcomes, five are favorable outcomes (2, 3, 4, 5, 6).
- The probability of the die not landing on a 1 is:
[tex]\[ P(B) = \frac{5}{6} \approx 0.8333 \][/tex]
### Step 3: Use the Multiplication Rule for Independent Events
Since the events are independent, the probability of both events A and B occurring is the product of their individual probabilities:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
Substituting the probabilities we obtained:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.8333 \][/tex]
### Step 4: Calculate the Result
Multiplying these probabilities together gives:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.8333 = 0.4167 \][/tex]
So, the probability that both the coin lands on tails and the die does not land on a 1 is:
[tex]\[ P(A \text{ and } B) \approx 0.4167 \][/tex]
In simplest fractional form, this probability is:
[tex]\[ P(A \text{ and } B) = \frac{5}{12} \][/tex]
Therefore, the probability that both events will occur is:
[tex]\[ P(A \text{ and } B) = \boxed{\frac{5}{12}} \][/tex]
### Step 1: Determine the Probability of Event A
Event A is that the coin lands on tails. For a fair coin, there are two equally likely outcomes: heads and tails.
- The probability of the coin landing on tails is:
[tex]\[ P(A) = \frac{1}{2} = 0.5 \][/tex]
### Step 2: Determine the Probability of Event B
Event B is that the six-sided die does not land on a 1. There are six possible outcomes when rolling a die: 1, 2, 3, 4, 5, and 6. Out of these six outcomes, five are favorable outcomes (2, 3, 4, 5, 6).
- The probability of the die not landing on a 1 is:
[tex]\[ P(B) = \frac{5}{6} \approx 0.8333 \][/tex]
### Step 3: Use the Multiplication Rule for Independent Events
Since the events are independent, the probability of both events A and B occurring is the product of their individual probabilities:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
Substituting the probabilities we obtained:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.8333 \][/tex]
### Step 4: Calculate the Result
Multiplying these probabilities together gives:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.8333 = 0.4167 \][/tex]
So, the probability that both the coin lands on tails and the die does not land on a 1 is:
[tex]\[ P(A \text{ and } B) \approx 0.4167 \][/tex]
In simplest fractional form, this probability is:
[tex]\[ P(A \text{ and } B) = \frac{5}{12} \][/tex]
Therefore, the probability that both events will occur is:
[tex]\[ P(A \text{ and } B) = \boxed{\frac{5}{12}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.