Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, let's break it down step by step:
1. Event A: The coin lands on heads.
The probability of a coin landing on heads (event A) can be calculated since a fair coin has two possible outcomes: heads or tails. Therefore, the probability of the coin landing on heads is:
[tex]\[ P(A) = \frac{1}{2} \][/tex]
2. Event B: The die lands on 1, 3, or 6.
A standard six-sided die has six faces, each numbered from 1 to 6. To find the probability of the die landing on 1, 3, or 6, note that these are three of the six possible outcomes.
[tex]\[ P(B) = \frac{3}{6} = \frac{1}{2} \][/tex]
3. Both Events Occurring: The product of their probabilities.
Since tossing a coin and rolling a die are independent events, the probability that both events A and B will occur can be calculated by multiplying the probability of each event:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
4. Substitute the probabilities into the formula:
[tex]\[ P(A \text{ and } B) = \left( \frac{1}{2} \right) \cdot \left( \frac{1}{2} \right) \][/tex]
Multiplying these fractions:
[tex]\[ P(A \text{ and } B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1 \times 1}{2 \times 2} = \frac{1}{4} \][/tex]
So, the probability that both events will occur is:
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]
1. Event A: The coin lands on heads.
The probability of a coin landing on heads (event A) can be calculated since a fair coin has two possible outcomes: heads or tails. Therefore, the probability of the coin landing on heads is:
[tex]\[ P(A) = \frac{1}{2} \][/tex]
2. Event B: The die lands on 1, 3, or 6.
A standard six-sided die has six faces, each numbered from 1 to 6. To find the probability of the die landing on 1, 3, or 6, note that these are three of the six possible outcomes.
[tex]\[ P(B) = \frac{3}{6} = \frac{1}{2} \][/tex]
3. Both Events Occurring: The product of their probabilities.
Since tossing a coin and rolling a die are independent events, the probability that both events A and B will occur can be calculated by multiplying the probability of each event:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
4. Substitute the probabilities into the formula:
[tex]\[ P(A \text{ and } B) = \left( \frac{1}{2} \right) \cdot \left( \frac{1}{2} \right) \][/tex]
Multiplying these fractions:
[tex]\[ P(A \text{ and } B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1 \times 1}{2 \times 2} = \frac{1}{4} \][/tex]
So, the probability that both events will occur is:
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.