Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Write an equation of the graph in its final position.

The graph of [tex]$y=7^x$[/tex] is translated 6 units to the left and then 3 units upward. Which of the following is the equation of the graph?

A. [tex]$y=7^{x-6}+3$[/tex]
B. [tex]$y=7^{x+6}+3$[/tex]
C. [tex]$y=7^{x+6}-3$[/tex]
D. [tex]$y=7^{x-6}-3$[/tex]

Sagot :

To find the equation of the graph after it is translated, we need to understand how translations affect the equation of a graph. Let's go through this step-by-step.

### Step 1: Translation to the Left
When a graph is translated horizontally to the left by a certain number of units, this affects the \( x \)-values in the equation. Specifically, if we want to translate the graph 6 units to the left, we replace \( x \) with \( x + 6 \).

Initially, our equation is:
[tex]\[ y = 7^x \][/tex]

After translating it 6 units to the left, the x in the exponent becomes \( x + 6 \):
[tex]\[ y = 7^{x+6} \][/tex]

### Step 2: Translation Upwards
When a graph is translated vertically upwards by a certain number of units, this affects the \( y \)-values in the equation. Specifically, if we want to translate the graph 3 units upward, we add 3 to the entire function.

From the previous step, our equation is:
[tex]\[ y = 7^{x+6} \][/tex]

After translating it 3 units upward, we add 3:
[tex]\[ y = 7^{x+6} + 3 \][/tex]

### Conclusion
Putting both steps together, the complete translation involves shifting the graph 6 units to the left and then 3 units upward. The new equation of the graph is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]

### Choosing the Correct Option
Among the given choices, this corresponds to:
B. \( y = 7^{x+6} + 3 \)

Therefore, the correct equation of the graph in its final position is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
And the correct option is:
B. [tex]\( y = 7^{x+6} + 3 \)[/tex]

To determine the equation of the graph \( y = 7^x \) after it is translated 6 units to the left and 3 units upward, follow these steps:

1. **Horizontal Translation**: Translating 6 units to the left replaces \( x \) with \( x + 6 \):

  \[

  y = 7^{x + 6}

  \]

2. **Vertical Translation**: Translating 3 units upward adds 3 to the entire function:

  \[

  y = 7^{x + 6} + 3

  \]

Thus, the final equation of the graph is:

\[

y = 7^{x + 6} + 3

\]

The correct answer is:

\[

\boxed{y = 7^{x + 6} + 3}

\]