Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Multiply the rational expressions.

[tex]\[
\frac{r^{10} s}{r^2-r-42} \cdot \frac{5 r^2-37 r+14}{r s^7}=
\][/tex]

[tex]\(\boxed{\ }\)[/tex]


Sagot :

Let's multiply the given rational expressions step by step.

Step 1: Start with the given rational expressions:
[tex]$ \frac{r^{10} s}{r^2-r-42} \cdot \frac{5 r^2-37 r+14}{r s^7} $[/tex]

Step 2: Multiply the numerators together:
[tex]$ r^{10} s \cdot (5 r^2 - 37 r + 14) $[/tex]
We get:
[tex]$ r^{10} s (5 r^2 - 37 r + 14) $[/tex]

Step 3: Multiply the denominators together:
[tex]$ (r^2 - r - 42) \cdot (r s^7) $[/tex]
We get:
[tex]$ r s^7 (r^2 - r - 42) $[/tex]

Putting it all together, we have:
[tex]$ \frac{r^{10} s (5 r^2 - 37 r + 14)}{r s^7 (r^2 - r - 42)} $[/tex]

Step 4: Simplify the expression by canceling the common factors.

First, let's cancel out the common variable \( s \):
[tex]$ \frac{r^{10}}{s^6} \cdot \frac{5 r^2 - 37 r + 14}{r^2 - r - 42} $[/tex]
The fraction now simplifies to:
[tex]$ \frac{r^{10} (5 r^2 - 37 r + 14)}{r s^6 (r^2 - r - 42)} $[/tex]

Next, simplify by the common factor \( r \):
[tex]$ \frac{r^{9} (5 r^2 - 37 r + 14)}{s^6 (r^2 - r - 42)} $[/tex]

After simplification, we obtain:
[tex]$ \frac{r^{9} (5 r - 2)}{s^6 (r + 6)} $[/tex]

So, the final simplified form of the expression is:
[tex]$ \frac{r^{9} (5 r - 2)}{s^6 (r + 6)} $[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.