Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To divide the given rational expressions, we need to multiply the first rational expression by the reciprocal of the second rational expression. Specifically, we will multiply:
[tex]\[ \frac{6 s^2 + 7 s t - 5 t^2}{6 s^2 - 5 s t + t^2} \][/tex]
by
[tex]\[ \frac{6 s^2 + 19 s t - 7 t^2}{3 s^2 + 26 s t + 35 t^2} \][/tex]
So, the expression to solve becomes:
[tex]\[ \frac{6 s^2 + 7 s t - 5 t^2}{6 s^2 - 5 s t + t^2} \times \frac{6 s^2 + 19 s t - 7 t^2}{3 s^2 + 26 s t + 35 t^2} \][/tex]
1. Factor each polynomial in the numerators and denominators if possible.
Let's examine the first numerator \(6 s^2 + 7 s t - 5 t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 + 7 s t - 5 t^2 = (3s - t)(2s + 5t) \][/tex]
Next, the first denominator \(6 s^2 - 5 s t + t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 - 5 s t + t^2 = (3s - t)(2s - t) \][/tex]
Now for the second numerator \(6 s^2 + 19 s t - 7 t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 + 19 s t - 7 t^2 = (3s + 7t)(2s - t) \][/tex]
And finally, the second denominator \(3 s^2 + 26 s t + 35 t^2\):
- By factoring, we find:
[tex]\[ 3 s^2 + 26 s t + 35 t^2 = (3s + 5t)(s + 7t) \][/tex]
2. Rewrite the expression using the factored forms:
[tex]\[ \frac{(3s - t)(2s + 5t)}{(3s - t)(2s - t)} \times \frac{(3s + 7t)(2s - t)}{(3s + 5t)(s + 7t)} \][/tex]
3. Cancel any common factors in the numerators and denominators:
- We see that \((3s - t)\) appears in both the numerator and denominator of the first fraction.
- \((2s - t)\) appears in both the numerator and denominator of the second fraction.
- \((3s + 5t)\) also appears both as a numerator and a denominator.
After canceling these common factors, we are left with:
[tex]\[ \frac{(2s + 5t)}{1} \times \frac{(3s + 7t)}{(s + 7t)} \][/tex]
4. Simplify the remaining expression:
[tex]\[ \frac{(2s + 5t)(3s + 7t)}{(s + 7t)} \][/tex]
Since there are no further common factors to cancel, the final result is:
[tex]\[ \frac{(2s + 5t)(3s + 7t)}{s + 7t} = 2s + 5t \][/tex]
Thus, the solution to the given problem is:
[tex]\[ \boxed{\frac{(2s + 5t)(3s + 7t)}{s + 7t}} \][/tex]
[tex]\[ \frac{6 s^2 + 7 s t - 5 t^2}{6 s^2 - 5 s t + t^2} \][/tex]
by
[tex]\[ \frac{6 s^2 + 19 s t - 7 t^2}{3 s^2 + 26 s t + 35 t^2} \][/tex]
So, the expression to solve becomes:
[tex]\[ \frac{6 s^2 + 7 s t - 5 t^2}{6 s^2 - 5 s t + t^2} \times \frac{6 s^2 + 19 s t - 7 t^2}{3 s^2 + 26 s t + 35 t^2} \][/tex]
1. Factor each polynomial in the numerators and denominators if possible.
Let's examine the first numerator \(6 s^2 + 7 s t - 5 t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 + 7 s t - 5 t^2 = (3s - t)(2s + 5t) \][/tex]
Next, the first denominator \(6 s^2 - 5 s t + t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 - 5 s t + t^2 = (3s - t)(2s - t) \][/tex]
Now for the second numerator \(6 s^2 + 19 s t - 7 t^2\):
- By factoring, we find:
[tex]\[ 6 s^2 + 19 s t - 7 t^2 = (3s + 7t)(2s - t) \][/tex]
And finally, the second denominator \(3 s^2 + 26 s t + 35 t^2\):
- By factoring, we find:
[tex]\[ 3 s^2 + 26 s t + 35 t^2 = (3s + 5t)(s + 7t) \][/tex]
2. Rewrite the expression using the factored forms:
[tex]\[ \frac{(3s - t)(2s + 5t)}{(3s - t)(2s - t)} \times \frac{(3s + 7t)(2s - t)}{(3s + 5t)(s + 7t)} \][/tex]
3. Cancel any common factors in the numerators and denominators:
- We see that \((3s - t)\) appears in both the numerator and denominator of the first fraction.
- \((2s - t)\) appears in both the numerator and denominator of the second fraction.
- \((3s + 5t)\) also appears both as a numerator and a denominator.
After canceling these common factors, we are left with:
[tex]\[ \frac{(2s + 5t)}{1} \times \frac{(3s + 7t)}{(s + 7t)} \][/tex]
4. Simplify the remaining expression:
[tex]\[ \frac{(2s + 5t)(3s + 7t)}{(s + 7t)} \][/tex]
Since there are no further common factors to cancel, the final result is:
[tex]\[ \frac{(2s + 5t)(3s + 7t)}{s + 7t} = 2s + 5t \][/tex]
Thus, the solution to the given problem is:
[tex]\[ \boxed{\frac{(2s + 5t)(3s + 7t)}{s + 7t}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.