At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Given polynomials \( p, q, r, \) and \( s \) such that \( q \neq 0, r \neq 0, \) and \( s \neq 0 \),

[tex]\[ \frac{p}{q} \div \frac{r}{s} = \][/tex]


Sagot :

To solve the given expression \(\frac{p}{q} \div \frac{r}{s}\), let's follow the required steps, ensuring each step is clearly explained:

1. Understanding Division of Fractions:
Dividing by a fraction is equivalent to multiplying by its reciprocal. The reciprocal of a fraction \(\frac{r}{s}\) is \(\frac{s}{r}\). Therefore:
[tex]\[ \frac{p}{q} \div \frac{r}{s} = \frac{p}{q} \times \frac{s}{r} \][/tex]

2. Multiplying the Fractions:
To multiply two fractions, you simply multiply their numerators (the top numbers) together and their denominators (the bottom numbers) together. This gives us:
[tex]\[ \frac{p}{q} \times \frac{s}{r} = \frac{p \cdot s}{q \cdot r} \][/tex]

3. Combining the Numerators and Denominators:
Combine the numerators \(p\) and \(s\) by multiplying them together, and combine the denominators \(q\) and \(r\) by multiplying them together:
[tex]\[ \frac{p \cdot s}{q \cdot r} \][/tex]

So, the simplified form of the expression \(\frac{p}{q} \div \frac{r}{s}\) is:
[tex]\[ \frac{p \cdot s}{q \cdot r} \][/tex]

Thus, the solution to the problem is:
[tex]\[ \frac{p}{q} \div \frac{r}{s} = \frac{p \cdot s}{q \cdot r} \][/tex]