Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem of finding the equivalent fraction, let's start by analyzing the given expression:
You have an original fraction:
[tex]\[ \frac{4}{3x} \][/tex]
You must find a new fraction with the same value but with a different denominator, specifically:
[tex]\[ \frac{\square}{9x^2 y} \][/tex]
Let's denote the new numerator by \( N \). Thus, we need:
[tex]\[ \frac{4}{3x} = \frac{N}{9x^2 y} \][/tex]
First, our goal is to determine the relationship between the denominators of these two fractions. The original denominator is \(3x\) and the new denominator is \(9x^2 y\).
To find \(N\), we will equate the two fractions and then solve for \(N\):
The fraction equality implies:
[tex]\[ \frac{4}{3x} = \frac{N}{9x^2 y} \][/tex]
Cross-multiply to solve for \( N \):
[tex]\[ 4 \cdot (9x^2 y) = N \cdot (3x) \][/tex]
Simplify the left side:
[tex]\[ 36x^2 y = 3x N \][/tex]
To isolate \( N \), divide both sides by \( 3x \):
[tex]\[ \frac{36x^2 y}{3x} = N \][/tex]
Simplify the right side:
[tex]\[ N = \frac{36x^2 y}{3x} = 12x y \][/tex]
So, the numerator \( N \) is \( 12xy \).
Therefore, the completed equivalent fraction is:
[tex]\[ \frac{12xy}{9x^2 y} \][/tex]
So, the blank should be filled with \( 12xy \), making the fraction:
[tex]\[ \frac{4}{3x} = \frac{12xy}{9x^2 y} \][/tex]
You have an original fraction:
[tex]\[ \frac{4}{3x} \][/tex]
You must find a new fraction with the same value but with a different denominator, specifically:
[tex]\[ \frac{\square}{9x^2 y} \][/tex]
Let's denote the new numerator by \( N \). Thus, we need:
[tex]\[ \frac{4}{3x} = \frac{N}{9x^2 y} \][/tex]
First, our goal is to determine the relationship between the denominators of these two fractions. The original denominator is \(3x\) and the new denominator is \(9x^2 y\).
To find \(N\), we will equate the two fractions and then solve for \(N\):
The fraction equality implies:
[tex]\[ \frac{4}{3x} = \frac{N}{9x^2 y} \][/tex]
Cross-multiply to solve for \( N \):
[tex]\[ 4 \cdot (9x^2 y) = N \cdot (3x) \][/tex]
Simplify the left side:
[tex]\[ 36x^2 y = 3x N \][/tex]
To isolate \( N \), divide both sides by \( 3x \):
[tex]\[ \frac{36x^2 y}{3x} = N \][/tex]
Simplify the right side:
[tex]\[ N = \frac{36x^2 y}{3x} = 12x y \][/tex]
So, the numerator \( N \) is \( 12xy \).
Therefore, the completed equivalent fraction is:
[tex]\[ \frac{12xy}{9x^2 y} \][/tex]
So, the blank should be filled with \( 12xy \), making the fraction:
[tex]\[ \frac{4}{3x} = \frac{12xy}{9x^2 y} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.