At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we follow these steps:
### a. Finding the Inverse Function
Given the function \( f(x) = x + 6 \), we need to find the inverse function \( f^{-1}(x) \).
1. Set \( y \) equal to \( f(x) \):
[tex]\[ y = x + 6 \][/tex]
2. Solve for \( x \) in terms of \( y \):
[tex]\[ y = x + 6 \implies y - 6 = x \implies x = y - 6 \][/tex]
3. Rewrite the equation with \( x \) and \( y \) switched (since \( y = f(x) \), therefore \( x = f^{-1}(y) \)):
[tex]\[ f^{-1}(x) = x - 6 \][/tex]
### Correct Choice
The correct choice is A.
So, the inverse function is:
[tex]\[ f^{-1}(x) = x - 6 \text{, for all } x \][/tex]
### b. Verifying the Equation
To verify the inverse function is correct, we need to show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### Verification 1: \( f(f^{-1}(x)) = x \)
Calculate \( f(f^{-1}(x)) \):
1. Substitute \( f^{-1}(x) \) into \( f \):
[tex]\[ f(f^{-1}(x)) = f(x - 6) \][/tex]
2. Evaluate \( f(x - 6) \):
[tex]\[ f(x - 6) = (x - 6) + 6 = x \][/tex]
Thus, \( f(f^{-1}(x)) = x \).
#### Verification 2: \( f^{-1}(f(x)) = x \)
Calculate \( f^{-1}(f(x)) \):
1. Substitute \( f(x) \) into \( f^{-1} \):
[tex]\[ f^{-1}(f(x)) = f^{-1}(x + 6) \][/tex]
2. Evaluate \( f^{-1}(x + 6) \):
[tex]\[ f^{-1}(x + 6) = (x + 6) - 6 = x \][/tex]
Thus, \( f^{-1}(f(x)) = x \).
### Conclusion
The correct inverse function is:
[tex]\[ f^{-1}(x) = x - 6 \text{, for all } x \][/tex]
This equation satisfies the conditions for an inverse function, as verified by [tex]\( f(f^{-1}(x)) = x \)[/tex] and [tex]\( f^{-1}(f(x)) = x \)[/tex].
### a. Finding the Inverse Function
Given the function \( f(x) = x + 6 \), we need to find the inverse function \( f^{-1}(x) \).
1. Set \( y \) equal to \( f(x) \):
[tex]\[ y = x + 6 \][/tex]
2. Solve for \( x \) in terms of \( y \):
[tex]\[ y = x + 6 \implies y - 6 = x \implies x = y - 6 \][/tex]
3. Rewrite the equation with \( x \) and \( y \) switched (since \( y = f(x) \), therefore \( x = f^{-1}(y) \)):
[tex]\[ f^{-1}(x) = x - 6 \][/tex]
### Correct Choice
The correct choice is A.
So, the inverse function is:
[tex]\[ f^{-1}(x) = x - 6 \text{, for all } x \][/tex]
### b. Verifying the Equation
To verify the inverse function is correct, we need to show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### Verification 1: \( f(f^{-1}(x)) = x \)
Calculate \( f(f^{-1}(x)) \):
1. Substitute \( f^{-1}(x) \) into \( f \):
[tex]\[ f(f^{-1}(x)) = f(x - 6) \][/tex]
2. Evaluate \( f(x - 6) \):
[tex]\[ f(x - 6) = (x - 6) + 6 = x \][/tex]
Thus, \( f(f^{-1}(x)) = x \).
#### Verification 2: \( f^{-1}(f(x)) = x \)
Calculate \( f^{-1}(f(x)) \):
1. Substitute \( f(x) \) into \( f^{-1} \):
[tex]\[ f^{-1}(f(x)) = f^{-1}(x + 6) \][/tex]
2. Evaluate \( f^{-1}(x + 6) \):
[tex]\[ f^{-1}(x + 6) = (x + 6) - 6 = x \][/tex]
Thus, \( f^{-1}(f(x)) = x \).
### Conclusion
The correct inverse function is:
[tex]\[ f^{-1}(x) = x - 6 \text{, for all } x \][/tex]
This equation satisfies the conditions for an inverse function, as verified by [tex]\( f(f^{-1}(x)) = x \)[/tex] and [tex]\( f^{-1}(f(x)) = x \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.