Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which expression is equivalent to \(\frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)}\), we need to perform the division operation by transforming it into a multiplication by the reciprocal.
1. Rewrite the division as a multiplication:
[tex]\[ \frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)} \quad \Rightarrow \quad \frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2} \][/tex]
2. Factorize the polynomials where possible:
- \(c^2-4\) is a difference of squares: \(c^2 - 4 = (c - 2)(c + 2)\)
- \(c^2 - 9\) is also a difference of squares: \(c^2 - 9 = (c - 3)(c + 3)\)
Thus, the expression becomes:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} = \frac{(c-2)\cancel{(c+2)}}{\cancel{c+3}} \cdot \frac{3(c-3)\cancel{(c+3)}}{\cancel{c+2}} \][/tex]
After canceling the common factors \((c+2)\) and \((c+3)\), we are left with:
[tex]\[ (c-2) \cdot 3(c-3) = 3(c-2)(c-3) \][/tex]
4. Conclude the simplified expression:
[tex]\[ 3(c-2)(c-3) \][/tex]
Now, we need to see which option matches our simplified form. We previously transformed the division into a multiplication:
Comparing with the given options:
1. \(\frac{c+3}{c^2-4} \div \frac{c+2}{3(c^2-9)}\) is incorrect.
2. \(\frac{c^2-4}{c+3} \div \frac{3(c^2-9)}{c+2}\) is incorrect.
3. \(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\) is correct (this matches our step).
4. \(\frac{c+3}{c^2-4} \cdot \frac{c+2}{3(c^2-9)}\) is incorrect.
Thus, the correct equivalent expression is:
[tex]\(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\)[/tex].
1. Rewrite the division as a multiplication:
[tex]\[ \frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)} \quad \Rightarrow \quad \frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2} \][/tex]
2. Factorize the polynomials where possible:
- \(c^2-4\) is a difference of squares: \(c^2 - 4 = (c - 2)(c + 2)\)
- \(c^2 - 9\) is also a difference of squares: \(c^2 - 9 = (c - 3)(c + 3)\)
Thus, the expression becomes:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} \][/tex]
3. Simplify the expression by canceling common factors:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} = \frac{(c-2)\cancel{(c+2)}}{\cancel{c+3}} \cdot \frac{3(c-3)\cancel{(c+3)}}{\cancel{c+2}} \][/tex]
After canceling the common factors \((c+2)\) and \((c+3)\), we are left with:
[tex]\[ (c-2) \cdot 3(c-3) = 3(c-2)(c-3) \][/tex]
4. Conclude the simplified expression:
[tex]\[ 3(c-2)(c-3) \][/tex]
Now, we need to see which option matches our simplified form. We previously transformed the division into a multiplication:
Comparing with the given options:
1. \(\frac{c+3}{c^2-4} \div \frac{c+2}{3(c^2-9)}\) is incorrect.
2. \(\frac{c^2-4}{c+3} \div \frac{3(c^2-9)}{c+2}\) is incorrect.
3. \(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\) is correct (this matches our step).
4. \(\frac{c+3}{c^2-4} \cdot \frac{c+2}{3(c^2-9)}\) is incorrect.
Thus, the correct equivalent expression is:
[tex]\(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.