poopey
Answered

Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which expression is equivalent to [tex]\frac{c^2-4}{c+3} \div \frac{c+2}{3\left(c^2-9\right)}[/tex]?

A. [tex]\frac{c+3}{c^2-4} \div \frac{c+2}{3\left(c^2-9\right)}[/tex]

B. [tex]\frac{c^2-4}{c+3} \div \frac{3\left(c^2-9\right)}{c+2}[/tex]

C. [tex]\frac{c^2-4}{c+3} \cdot \frac{3\left(c^2-9\right)}{c+2}[/tex]

D. [tex]\frac{c+3}{c^2-4} \cdot \frac{c+2}{3\left(c^2-9\right)}[/tex]

Sagot :

To determine which expression is equivalent to \(\frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)}\), we need to perform the division operation by transforming it into a multiplication by the reciprocal.

1. Rewrite the division as a multiplication:
[tex]\[ \frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)} \quad \Rightarrow \quad \frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2} \][/tex]

2. Factorize the polynomials where possible:
- \(c^2-4\) is a difference of squares: \(c^2 - 4 = (c - 2)(c + 2)\)
- \(c^2 - 9\) is also a difference of squares: \(c^2 - 9 = (c - 3)(c + 3)\)

Thus, the expression becomes:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} \][/tex]

3. Simplify the expression by canceling common factors:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} = \frac{(c-2)\cancel{(c+2)}}{\cancel{c+3}} \cdot \frac{3(c-3)\cancel{(c+3)}}{\cancel{c+2}} \][/tex]

After canceling the common factors \((c+2)\) and \((c+3)\), we are left with:
[tex]\[ (c-2) \cdot 3(c-3) = 3(c-2)(c-3) \][/tex]

4. Conclude the simplified expression:
[tex]\[ 3(c-2)(c-3) \][/tex]

Now, we need to see which option matches our simplified form. We previously transformed the division into a multiplication:

Comparing with the given options:

1. \(\frac{c+3}{c^2-4} \div \frac{c+2}{3(c^2-9)}\) is incorrect.
2. \(\frac{c^2-4}{c+3} \div \frac{3(c^2-9)}{c+2}\) is incorrect.
3. \(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\) is correct (this matches our step).
4. \(\frac{c+3}{c^2-4} \cdot \frac{c+2}{3(c^2-9)}\) is incorrect.

Thus, the correct equivalent expression is:
[tex]\(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\)[/tex].