poopey
Answered

Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which expression is equivalent to [tex]\frac{c^2-4}{c+3} \div \frac{c+2}{3\left(c^2-9\right)}[/tex]?

A. [tex]\frac{c+3}{c^2-4} \div \frac{c+2}{3\left(c^2-9\right)}[/tex]

B. [tex]\frac{c^2-4}{c+3} \div \frac{3\left(c^2-9\right)}{c+2}[/tex]

C. [tex]\frac{c^2-4}{c+3} \cdot \frac{3\left(c^2-9\right)}{c+2}[/tex]

D. [tex]\frac{c+3}{c^2-4} \cdot \frac{c+2}{3\left(c^2-9\right)}[/tex]


Sagot :

To determine which expression is equivalent to \(\frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)}\), we need to perform the division operation by transforming it into a multiplication by the reciprocal.

1. Rewrite the division as a multiplication:
[tex]\[ \frac{c^2-4}{c+3} \div \frac{c+2}{3(c^2-9)} \quad \Rightarrow \quad \frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2} \][/tex]

2. Factorize the polynomials where possible:
- \(c^2-4\) is a difference of squares: \(c^2 - 4 = (c - 2)(c + 2)\)
- \(c^2 - 9\) is also a difference of squares: \(c^2 - 9 = (c - 3)(c + 3)\)

Thus, the expression becomes:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} \][/tex]

3. Simplify the expression by canceling common factors:
[tex]\[ \frac{(c-2)(c+2)}{c+3} \cdot \frac{3(c-3)(c+3)}{c+2} = \frac{(c-2)\cancel{(c+2)}}{\cancel{c+3}} \cdot \frac{3(c-3)\cancel{(c+3)}}{\cancel{c+2}} \][/tex]

After canceling the common factors \((c+2)\) and \((c+3)\), we are left with:
[tex]\[ (c-2) \cdot 3(c-3) = 3(c-2)(c-3) \][/tex]

4. Conclude the simplified expression:
[tex]\[ 3(c-2)(c-3) \][/tex]

Now, we need to see which option matches our simplified form. We previously transformed the division into a multiplication:

Comparing with the given options:

1. \(\frac{c+3}{c^2-4} \div \frac{c+2}{3(c^2-9)}\) is incorrect.
2. \(\frac{c^2-4}{c+3} \div \frac{3(c^2-9)}{c+2}\) is incorrect.
3. \(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\) is correct (this matches our step).
4. \(\frac{c+3}{c^2-4} \cdot \frac{c+2}{3(c^2-9)}\) is incorrect.

Thus, the correct equivalent expression is:
[tex]\(\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.