Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the expression that is equivalent to the given complex fraction
[tex]\[ \frac{\frac{-2}{x} + \frac{5}{y}}{\frac{3}{y} - \frac{2}{x}} \][/tex]
let's simplify it step by step.
1. Identifying the Numerator and Denominator:
The given complex fraction can be split into:
[tex]\[ \text{Numerator} = \frac{-2}{x} + \frac{5}{y} \][/tex]
[tex]\[ \text{Denominator} = \frac{3}{y} - \frac{2}{x} \][/tex]
2. Finding a Common Denominator for the Numerator and Denominator:
For simplification, we find a common denominator for each part:
[tex]\[ \text{Numerator: } \frac{-2}{x} + \frac{5}{y} \quad \text{(common denominator = xy)} \][/tex]
[tex]\[ = \frac{-2y + 5x}{xy} \][/tex]
Similarly:
[tex]\[ \text{Denominator: } \frac{3}{y} - \frac{2}{x} \quad \text{(common denominator = xy)} \][/tex]
[tex]\[ = \frac{3x - 2y}{xy} \][/tex]
3. Combining the Numerator and Denominator:
Now, substitute these back into the original complex fraction:
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
4. Simplifying the Complex Fraction:
To simplify, multiply by the reciprocal of the denominator:
[tex]\[ = \frac{-2y + 5x}{xy} \times \frac{xy}{3x - 2y} \][/tex]
The \(\frac{xy}{xy}\) cancels out, leaving:
[tex]\[ = \frac{-2y + 5x}{3x - 2y} \][/tex]
Thus, the simplified form of the given complex fraction is:
[tex]\[ \boxed{\frac{-2y + 5x}{3x - 2y}} \][/tex]
[tex]\[ \frac{\frac{-2}{x} + \frac{5}{y}}{\frac{3}{y} - \frac{2}{x}} \][/tex]
let's simplify it step by step.
1. Identifying the Numerator and Denominator:
The given complex fraction can be split into:
[tex]\[ \text{Numerator} = \frac{-2}{x} + \frac{5}{y} \][/tex]
[tex]\[ \text{Denominator} = \frac{3}{y} - \frac{2}{x} \][/tex]
2. Finding a Common Denominator for the Numerator and Denominator:
For simplification, we find a common denominator for each part:
[tex]\[ \text{Numerator: } \frac{-2}{x} + \frac{5}{y} \quad \text{(common denominator = xy)} \][/tex]
[tex]\[ = \frac{-2y + 5x}{xy} \][/tex]
Similarly:
[tex]\[ \text{Denominator: } \frac{3}{y} - \frac{2}{x} \quad \text{(common denominator = xy)} \][/tex]
[tex]\[ = \frac{3x - 2y}{xy} \][/tex]
3. Combining the Numerator and Denominator:
Now, substitute these back into the original complex fraction:
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
4. Simplifying the Complex Fraction:
To simplify, multiply by the reciprocal of the denominator:
[tex]\[ = \frac{-2y + 5x}{xy} \times \frac{xy}{3x - 2y} \][/tex]
The \(\frac{xy}{xy}\) cancels out, leaving:
[tex]\[ = \frac{-2y + 5x}{3x - 2y} \][/tex]
Thus, the simplified form of the given complex fraction is:
[tex]\[ \boxed{\frac{-2y + 5x}{3x - 2y}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.