Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve and simplify the given complex fraction:
[tex]\[ \frac{\frac{-2}{x}+\frac{5}{y}}{\frac{3}{y}-\frac{2}{x}} \][/tex]
we need to follow these steps:
### Step 1: Find a common denominator for the individual fractions in both the numerator and the denominator.
For the numerator \(\frac{-2}{x} + \frac{5}{y}\):
- The common denominator is \(xy\), so:
[tex]\[ \frac{-2}{x} = \frac{-2y}{xy} \quad \text{and} \quad \frac{5}{y} = \frac{5x}{xy} \][/tex]
Combining these fractions:
[tex]\[ \frac{-2}{x} + \frac{5}{y} = \frac{-2y + 5x}{xy} \][/tex]
For the denominator \(\frac{3}{y} - \frac{2}{x}\):
- The common denominator is \(xy\), so:
[tex]\[ \frac{3}{y} = \frac{3x}{xy} \quad \text{and} \quad \frac{2}{x} = \frac{2y}{xy} \][/tex]
Combining these fractions:
[tex]\[ \frac{3}{y} - \frac{2}{x} = \frac{3x - 2y}{xy} \][/tex]
### Step 2: Substitute these expressions back into the original complex fraction.
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
### Step 3: Simplify the complex fraction by multiplying the numerator by the reciprocal of the denominator.
[tex]\[ \frac{-2y + 5x}{3x - 2y} \cdot \frac{xy}{xy} = \frac{-2y + 5x}{3x - 2y} \][/tex]
### Step 4: Simplify and look at the resulting fraction to match it with one of the given choices.
The resulting fraction is:
[tex]\[ \frac{-2y + 5x}{3x - 2y} \][/tex]
### Conclusion:
The equivalent expression to the given complex fraction is:
[tex]\[ \boxed{\frac{-2 y+5 x}{3 x-2 y}} \][/tex]
Therefore, the correct answer is:
[tex]\(\frac{-2 y+5 x}{3 x-2 y}\)[/tex].
[tex]\[ \frac{\frac{-2}{x}+\frac{5}{y}}{\frac{3}{y}-\frac{2}{x}} \][/tex]
we need to follow these steps:
### Step 1: Find a common denominator for the individual fractions in both the numerator and the denominator.
For the numerator \(\frac{-2}{x} + \frac{5}{y}\):
- The common denominator is \(xy\), so:
[tex]\[ \frac{-2}{x} = \frac{-2y}{xy} \quad \text{and} \quad \frac{5}{y} = \frac{5x}{xy} \][/tex]
Combining these fractions:
[tex]\[ \frac{-2}{x} + \frac{5}{y} = \frac{-2y + 5x}{xy} \][/tex]
For the denominator \(\frac{3}{y} - \frac{2}{x}\):
- The common denominator is \(xy\), so:
[tex]\[ \frac{3}{y} = \frac{3x}{xy} \quad \text{and} \quad \frac{2}{x} = \frac{2y}{xy} \][/tex]
Combining these fractions:
[tex]\[ \frac{3}{y} - \frac{2}{x} = \frac{3x - 2y}{xy} \][/tex]
### Step 2: Substitute these expressions back into the original complex fraction.
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
### Step 3: Simplify the complex fraction by multiplying the numerator by the reciprocal of the denominator.
[tex]\[ \frac{-2y + 5x}{3x - 2y} \cdot \frac{xy}{xy} = \frac{-2y + 5x}{3x - 2y} \][/tex]
### Step 4: Simplify and look at the resulting fraction to match it with one of the given choices.
The resulting fraction is:
[tex]\[ \frac{-2y + 5x}{3x - 2y} \][/tex]
### Conclusion:
The equivalent expression to the given complex fraction is:
[tex]\[ \boxed{\frac{-2 y+5 x}{3 x-2 y}} \][/tex]
Therefore, the correct answer is:
[tex]\(\frac{-2 y+5 x}{3 x-2 y}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.