Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's solve the equation \((\tan (\theta)-2)\left(25 \sin^2(\theta)-1\right)=0\).
### Step-by-Step Solution:
This equation is a product of two factors, and for the product to be zero, at least one of the factors must be zero. Therefore, we'll break it down into two separate equations and solve them individually.
#### Equation 1: \(\tan(\theta) - 2 = 0\)
1. Isolate \(\tan(\theta)\):
[tex]\[ \tan(\theta) - 2 = 0 \][/tex]
[tex]\[ \tan(\theta) = 2 \][/tex]
2. Solve for \(\theta\):
We need to find \(\theta\) such that the tangent of \(\theta\) equals 2. One solution is:
[tex]\[ \theta = \tan^{-1}(2) \][/tex]
This can be written as:
[tex]\[ \theta = \arctan(2) \][/tex]
#### Equation 2: \(25 \sin^2(\theta) - 1 = 0\)
1. Isolate \(\sin^2(\theta)\):
[tex]\[ 25 \sin^2(\theta) - 1 = 0 \][/tex]
[tex]\[ 25 \sin^2(\theta) = 1 \][/tex]
[tex]\[ \sin^2(\theta) = \frac{1}{25} \][/tex]
2. Solve for \(\sin(\theta)\):
We need to find \(\theta\) such that the sine of \(\theta\) squared equals \(\frac{1}{25}\). This gives:
[tex]\[ \sin(\theta) = \pm \frac{1}{5} \][/tex]
So, there are two possible solutions:
[tex]\[ \sin(\theta) = \frac{1}{5} \][/tex]
[tex]\[ \sin(\theta) = -\frac{1}{5} \][/tex]
3. Solve for \(\theta\):
[tex]\[ \theta = \sin^{-1}\left(\frac{1}{5}\right) \][/tex]
[tex]\[ \theta = \sin^{-1}\left(-\frac{1}{5}\right) \][/tex]
These can be written more specifically as:
[tex]\[ \theta = \arcsin\left(\frac{1}{5}\right) \approx 0.201357920790331 \][/tex]
[tex]\[ \theta = \arcsin\left(-\frac{1}{5}\right) \approx -0.201357920790331 \][/tex]
### Summary of Solutions:
The solutions to the equation \((\tan (\theta)-2)\left(25 \sin^2(\theta)-1\right)=0\) are:
[tex]\[ \theta = \arctan(2) \][/tex]
[tex]\[ \theta \approx 0.201357920790331 \][/tex]
[tex]\[ \theta \approx -0.201357920790331 \][/tex]
These represent the values of [tex]\(\theta\)[/tex] where either [tex]\(\tan(\theta) = 2\)[/tex] or [tex]\(\sin^2(\theta) = \frac{1}{25}\)[/tex].
### Step-by-Step Solution:
This equation is a product of two factors, and for the product to be zero, at least one of the factors must be zero. Therefore, we'll break it down into two separate equations and solve them individually.
#### Equation 1: \(\tan(\theta) - 2 = 0\)
1. Isolate \(\tan(\theta)\):
[tex]\[ \tan(\theta) - 2 = 0 \][/tex]
[tex]\[ \tan(\theta) = 2 \][/tex]
2. Solve for \(\theta\):
We need to find \(\theta\) such that the tangent of \(\theta\) equals 2. One solution is:
[tex]\[ \theta = \tan^{-1}(2) \][/tex]
This can be written as:
[tex]\[ \theta = \arctan(2) \][/tex]
#### Equation 2: \(25 \sin^2(\theta) - 1 = 0\)
1. Isolate \(\sin^2(\theta)\):
[tex]\[ 25 \sin^2(\theta) - 1 = 0 \][/tex]
[tex]\[ 25 \sin^2(\theta) = 1 \][/tex]
[tex]\[ \sin^2(\theta) = \frac{1}{25} \][/tex]
2. Solve for \(\sin(\theta)\):
We need to find \(\theta\) such that the sine of \(\theta\) squared equals \(\frac{1}{25}\). This gives:
[tex]\[ \sin(\theta) = \pm \frac{1}{5} \][/tex]
So, there are two possible solutions:
[tex]\[ \sin(\theta) = \frac{1}{5} \][/tex]
[tex]\[ \sin(\theta) = -\frac{1}{5} \][/tex]
3. Solve for \(\theta\):
[tex]\[ \theta = \sin^{-1}\left(\frac{1}{5}\right) \][/tex]
[tex]\[ \theta = \sin^{-1}\left(-\frac{1}{5}\right) \][/tex]
These can be written more specifically as:
[tex]\[ \theta = \arcsin\left(\frac{1}{5}\right) \approx 0.201357920790331 \][/tex]
[tex]\[ \theta = \arcsin\left(-\frac{1}{5}\right) \approx -0.201357920790331 \][/tex]
### Summary of Solutions:
The solutions to the equation \((\tan (\theta)-2)\left(25 \sin^2(\theta)-1\right)=0\) are:
[tex]\[ \theta = \arctan(2) \][/tex]
[tex]\[ \theta \approx 0.201357920790331 \][/tex]
[tex]\[ \theta \approx -0.201357920790331 \][/tex]
These represent the values of [tex]\(\theta\)[/tex] where either [tex]\(\tan(\theta) = 2\)[/tex] or [tex]\(\sin^2(\theta) = \frac{1}{25}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.