Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the cost of each of the given items in 13 years, assuming an annual inflation rate of 11%, we can use the compound interest formula:
[tex]\[ \text{Future Value} = \text{Present Value} \times (1 + r)^t \][/tex]
where:
- \(\text{Future Value}\) is the amount we are looking to find.
- \(\text{Present Value}\) is the current cost of the item.
- \(r\) is the inflation rate expressed as a decimal (11% = 0.11).
- \(t\) is the number of years (13 years).
Let's go through the calculation step-by-step for each item:
1. Phone Bill:
- Present Value (PV) = $40
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 40 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 40 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 155.33 \][/tex]
Therefore, the future cost of the phone bill will be approximately $155.33.
2. Pair of Shoes:
- Present Value (PV) = $65
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 65 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 65 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 252.41 \][/tex]
Therefore, the future cost of the pair of shoes will be approximately $252.41.
3. New Suit:
- Present Value (PV) = $350
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 350 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 350 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 1359.15 \][/tex]
Therefore, the future cost of the new suit will be approximately $1359.15.
4. Monthly Rent:
- Present Value (PV) = $625
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 625 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 625 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 2427.05 \][/tex]
Therefore, the future cost of the monthly rent will be approximately $2427.05.
In summary, the costs in 13 years will be:
- Phone bill: $155.33
- Pair of shoes: $252.41
- New Suit: $1359.15
- Monthly Rent: $2427.05
[tex]\[ \text{Future Value} = \text{Present Value} \times (1 + r)^t \][/tex]
where:
- \(\text{Future Value}\) is the amount we are looking to find.
- \(\text{Present Value}\) is the current cost of the item.
- \(r\) is the inflation rate expressed as a decimal (11% = 0.11).
- \(t\) is the number of years (13 years).
Let's go through the calculation step-by-step for each item:
1. Phone Bill:
- Present Value (PV) = $40
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 40 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 40 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 155.33 \][/tex]
Therefore, the future cost of the phone bill will be approximately $155.33.
2. Pair of Shoes:
- Present Value (PV) = $65
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 65 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 65 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 252.41 \][/tex]
Therefore, the future cost of the pair of shoes will be approximately $252.41.
3. New Suit:
- Present Value (PV) = $350
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 350 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 350 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 1359.15 \][/tex]
Therefore, the future cost of the new suit will be approximately $1359.15.
4. Monthly Rent:
- Present Value (PV) = $625
- Inflation rate (r) = 0.11
- Number of years (t) = 13
Applying the formula:
[tex]\[ \text{Future Value} = 625 \times (1 + 0.11)^{13} \][/tex]
[tex]\[ \text{Future Value} \approx 625 \times 3.883225 \][/tex]
[tex]\[ \text{Future Value} \approx 2427.05 \][/tex]
Therefore, the future cost of the monthly rent will be approximately $2427.05.
In summary, the costs in 13 years will be:
- Phone bill: $155.33
- Pair of shoes: $252.41
- New Suit: $1359.15
- Monthly Rent: $2427.05
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.