At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the sum of the first 36 terms of the given arithmetic series (13, 19, 25, ...), we can follow these steps:
1. Identify the first term (a) and the common difference (d):
- First term, \( a = 13 \)
- Common difference, \( d = 19 - 13 = 6 \)
2. Determine the number of terms (n):
- Number of terms, \( n = 36 \)
3. Use the formula for the sum of the first \( n \) terms of an arithmetic series:
The formula is:
[tex]\[ S_n = \frac{n}{2} \times (2a + (n-1)d) \][/tex]
Where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( d \) is the common difference, and \( n \) is the number of terms.
4. Substitute the known values into the formula:
- \( a = 13 \)
- \( d = 6 \)
- \( n = 36 \)
[tex]\[ S_{36} = \frac{36}{2} \times (2 \times 13 + (36-1) \times 6) \][/tex]
5. Simplify the expression inside the parentheses:
- Calculate \( 2 \times 13 \):
[tex]\[ 2 \times 13 = 26 \][/tex]
- Calculate \( (36-1) \times 6 \):
[tex]\[ 35 \times 6 = 210 \][/tex]
- Add the two results together:
[tex]\[ 26 + 210 = 236 \][/tex]
6. Multiply by \(\frac{36}{2}\):
[tex]\[ S_{36} = 18 \times 236 \][/tex]
7. Complete the multiplication:
[tex]\[ 18 \times 236 = 4248 \][/tex]
Therefore, the sum of the first 36 terms of the arithmetic series 13, 19, 25, ..., to the nearest integer, is:
[tex]\[ \boxed{4248} \][/tex]
1. Identify the first term (a) and the common difference (d):
- First term, \( a = 13 \)
- Common difference, \( d = 19 - 13 = 6 \)
2. Determine the number of terms (n):
- Number of terms, \( n = 36 \)
3. Use the formula for the sum of the first \( n \) terms of an arithmetic series:
The formula is:
[tex]\[ S_n = \frac{n}{2} \times (2a + (n-1)d) \][/tex]
Where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( d \) is the common difference, and \( n \) is the number of terms.
4. Substitute the known values into the formula:
- \( a = 13 \)
- \( d = 6 \)
- \( n = 36 \)
[tex]\[ S_{36} = \frac{36}{2} \times (2 \times 13 + (36-1) \times 6) \][/tex]
5. Simplify the expression inside the parentheses:
- Calculate \( 2 \times 13 \):
[tex]\[ 2 \times 13 = 26 \][/tex]
- Calculate \( (36-1) \times 6 \):
[tex]\[ 35 \times 6 = 210 \][/tex]
- Add the two results together:
[tex]\[ 26 + 210 = 236 \][/tex]
6. Multiply by \(\frac{36}{2}\):
[tex]\[ S_{36} = 18 \times 236 \][/tex]
7. Complete the multiplication:
[tex]\[ 18 \times 236 = 4248 \][/tex]
Therefore, the sum of the first 36 terms of the arithmetic series 13, 19, 25, ..., to the nearest integer, is:
[tex]\[ \boxed{4248} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.