Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether a given function is an even function, we need to check if it satisfies the condition \( f(-x) = f(x) \) for all \( x \).
Let's check each function one by one.
### 1. \( f(x) = (x-1)^2 \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = (-x - 1)^2 = (-(x + 1))^2 = (x + 1)^2 \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ (x - 1)^2 \neq (x + 1)^2 \][/tex]
Thus, \( f(x) = (x - 1)^2 \) is not an even function.
### 2. \( f(x) = 8x \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = 8(-x) = -8x \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ 8x \neq -8x \][/tex]
Thus, \( f(x) = 8x \) is not an even function.
### 3. \( f(x) = x^2 - x \)
First, we compute \( f(-x) \):
[tex]\[ f(-x) = (-x)^2 - (-x) = x^2 + x \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ x^2 - x \neq x^2 + x \][/tex]
Thus, \( f(x) = x^2 - x \) is not an even function.
### 4. \( f(x) = 7 \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = 7 \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ f(x) = f(-x) = 7 \][/tex]
Since \( f(x) = 7 \), \( f(-x) = 7 \). We see that these are equal, which means:
[tex]\[ f(-x) = f(x) \][/tex]
Thus, \( f(x) = 7 \) is an even function.
### Summary
Among the given functions, the only even function is \( f(x) = 7 \).
So, the even function is:
[tex]\[ f(x) = 7 \][/tex]
Let's check each function one by one.
### 1. \( f(x) = (x-1)^2 \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = (-x - 1)^2 = (-(x + 1))^2 = (x + 1)^2 \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ (x - 1)^2 \neq (x + 1)^2 \][/tex]
Thus, \( f(x) = (x - 1)^2 \) is not an even function.
### 2. \( f(x) = 8x \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = 8(-x) = -8x \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ 8x \neq -8x \][/tex]
Thus, \( f(x) = 8x \) is not an even function.
### 3. \( f(x) = x^2 - x \)
First, we compute \( f(-x) \):
[tex]\[ f(-x) = (-x)^2 - (-x) = x^2 + x \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ x^2 - x \neq x^2 + x \][/tex]
Thus, \( f(x) = x^2 - x \) is not an even function.
### 4. \( f(x) = 7 \)
First, we calculate \( f(-x) \):
[tex]\[ f(-x) = 7 \][/tex]
Then, we compare \( f(x) \) and \( f(-x) \):
[tex]\[ f(x) = f(-x) = 7 \][/tex]
Since \( f(x) = 7 \), \( f(-x) = 7 \). We see that these are equal, which means:
[tex]\[ f(-x) = f(x) \][/tex]
Thus, \( f(x) = 7 \) is an even function.
### Summary
Among the given functions, the only even function is \( f(x) = 7 \).
So, the even function is:
[tex]\[ f(x) = 7 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.