Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the function \( f(x) = 9 - 4x^2 \) is an odd function, we need to check if \( f(-x) = -f(x) \).
1. First, we evaluate \( f(-x) \):
[tex]\[ f(-x) = 9 - 4(-x)^2 \][/tex]
This simplifies as follows:
[tex]\[ f(-x) = 9 - 4(x^2) \][/tex]
[tex]\[ f(-x) = 9 - 4x^2 \][/tex]
2. Next, we compute \(-f(x)\):
[tex]\[ -f(x) = -(9 - 4x^2) \][/tex]
This simplifies as follows:
[tex]\[ -f(x) = -9 + 4x^2 \][/tex]
[tex]\[ -f(x) = 4x^2 - 9 \][/tex]
3. Now, we compare \( f(-x) \) and \(-f(x) \):
[tex]\[ f(-x) = 9 - 4x^2 \][/tex]
[tex]\[ -f(x) = 4x^2 - 9 \][/tex]
We observe that:
[tex]\[ f(-x) \neq -f(x) \][/tex]
Since \( f(-x) \) is not equal to \(-f(x) \), the function \( f(x) = 9 - 4x^2 \) is not an odd function.
Thus, the correct statement is:
Determine whether [tex]\( 9 - 4(-x)^2 \)[/tex] is equivalent to [tex]\( -\left( 9 - 4x^2 \right) \)[/tex].
1. First, we evaluate \( f(-x) \):
[tex]\[ f(-x) = 9 - 4(-x)^2 \][/tex]
This simplifies as follows:
[tex]\[ f(-x) = 9 - 4(x^2) \][/tex]
[tex]\[ f(-x) = 9 - 4x^2 \][/tex]
2. Next, we compute \(-f(x)\):
[tex]\[ -f(x) = -(9 - 4x^2) \][/tex]
This simplifies as follows:
[tex]\[ -f(x) = -9 + 4x^2 \][/tex]
[tex]\[ -f(x) = 4x^2 - 9 \][/tex]
3. Now, we compare \( f(-x) \) and \(-f(x) \):
[tex]\[ f(-x) = 9 - 4x^2 \][/tex]
[tex]\[ -f(x) = 4x^2 - 9 \][/tex]
We observe that:
[tex]\[ f(-x) \neq -f(x) \][/tex]
Since \( f(-x) \) is not equal to \(-f(x) \), the function \( f(x) = 9 - 4x^2 \) is not an odd function.
Thus, the correct statement is:
Determine whether [tex]\( 9 - 4(-x)^2 \)[/tex] is equivalent to [tex]\( -\left( 9 - 4x^2 \right) \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.