Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's determine the closest \( z \)-value for each given probability: 0.14, 0.16, 0.86, and 0.98. We have a table of \( z \)-values and their corresponding probabilities:
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{array} \][/tex]
To determine the closest \( z \)-value for each probability, we compare the given probabilities with the available probabilities in the table.
1. For the probability 0.14:
- Differences:
- \( |0.5000 - 0.14| = 0.3600 \)
- \( |0.8413 - 0.14| = 0.7013 \)
- \( |0.9772 - 0.14| = 0.8372 \)
- \( |0.9987 - 0.14| = 0.8587 \)
- The smallest difference is 0.3600, corresponding to \( z = 0.00 \).
2. For the probability 0.16:
- Differences:
- \( |0.5000 - 0.16| = 0.3400 \)
- \( |0.8413 - 0.16| = 0.6813 \)
- \( |0.9772 - 0.16| = 0.8172 \)
- \( |0.9987 - 0.16| = 0.8387 \)
- The smallest difference is 0.3400, corresponding to \( z = 0.00 \).
3. For the probability 0.86:
- Differences:
- \( |0.5000 - 0.86| = 0.3600 \)
- \( |0.8413 - 0.86| = 0.0187 \)
- \( |0.9772 - 0.86| = 0.1172 \)
- \( |0.9987 - 0.86| = 0.1387 \)
- The smallest difference is 0.0187, corresponding to \( z = 1.00 \).
4. For the probability 0.98:
- Differences:
- \( |0.5000 - 0.98| = 0.4800 \)
- \( |0.8413 - 0.98| = 0.1387 \)
- \( |0.9772 - 0.98| = 0.0028 \)
- \( |0.9987 - 0.98| = 0.0187 \)
- The smallest difference is 0.0028, corresponding to \( z = 2.00 \).
So, the closest \( z \)-values for the given probabilities are:
- Probability \( 0.14 \) -> \( z = 0.00 \)
- Probability \( 0.16 \) -> \( z = 0.00 \)
- Probability \( 0.86 \) -> \( z = 1.00 \)
- Probability \( 0.98 \) -> \( z = 2.00 \)
Thus, the final answer is:
[tex]\[ [0.0, 0.0, 1.0, 2.0] \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{array} \][/tex]
To determine the closest \( z \)-value for each probability, we compare the given probabilities with the available probabilities in the table.
1. For the probability 0.14:
- Differences:
- \( |0.5000 - 0.14| = 0.3600 \)
- \( |0.8413 - 0.14| = 0.7013 \)
- \( |0.9772 - 0.14| = 0.8372 \)
- \( |0.9987 - 0.14| = 0.8587 \)
- The smallest difference is 0.3600, corresponding to \( z = 0.00 \).
2. For the probability 0.16:
- Differences:
- \( |0.5000 - 0.16| = 0.3400 \)
- \( |0.8413 - 0.16| = 0.6813 \)
- \( |0.9772 - 0.16| = 0.8172 \)
- \( |0.9987 - 0.16| = 0.8387 \)
- The smallest difference is 0.3400, corresponding to \( z = 0.00 \).
3. For the probability 0.86:
- Differences:
- \( |0.5000 - 0.86| = 0.3600 \)
- \( |0.8413 - 0.86| = 0.0187 \)
- \( |0.9772 - 0.86| = 0.1172 \)
- \( |0.9987 - 0.86| = 0.1387 \)
- The smallest difference is 0.0187, corresponding to \( z = 1.00 \).
4. For the probability 0.98:
- Differences:
- \( |0.5000 - 0.98| = 0.4800 \)
- \( |0.8413 - 0.98| = 0.1387 \)
- \( |0.9772 - 0.98| = 0.0028 \)
- \( |0.9987 - 0.98| = 0.0187 \)
- The smallest difference is 0.0028, corresponding to \( z = 2.00 \).
So, the closest \( z \)-values for the given probabilities are:
- Probability \( 0.14 \) -> \( z = 0.00 \)
- Probability \( 0.16 \) -> \( z = 0.00 \)
- Probability \( 0.86 \) -> \( z = 1.00 \)
- Probability \( 0.98 \) -> \( z = 2.00 \)
Thus, the final answer is:
[tex]\[ [0.0, 0.0, 1.0, 2.0] \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.