Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve this step-by-step!
Given the problem:
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 1: Express the fractions separately.
First fraction:
[tex]\[ \frac{x^2}{x+5} \][/tex]
Second fraction:
[tex]\[ \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 2: Multiply the fractions.
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} = \frac{x^2 (x^2 + 4x - 5)}{(x + 5)(x^2 - 4x)} \][/tex]
Step 3: Simplify the resulting expression, if possible.
To simplify, let's factorize the numerator and the denominator:
- The numerator \(x^2 (x^2 + 4x - 5)\) is already factored as much as possible.
- The denominator \( (x + 5)(x^2 - 4x) \) can be factored further.
Notice that \( x^2 - 4x \) can be written as \( x(x - 4) \).
So, the expression becomes:
[tex]\[ \frac{x^2 (x^2 + 4x - 5)}{(x + 5)x(x - 4)} \][/tex]
Next, let's factorize \(x^2 + 4x - 5\). This factors to \( (x + 5)(x - 1) \).
Thus the expression now looks like:
[tex]\[ \frac{x^2 (x + 5)(x - 1)}{(x + 5)x(x - 4)} \][/tex]
Step 4: Cancel common factors in the numerator and the denominator.
The \( (x + 5) \) and one \( x \) in the numerator and denominator cancel out:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
So, the simplified form of the original product is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Therefore, the final simplified result is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Given the problem:
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 1: Express the fractions separately.
First fraction:
[tex]\[ \frac{x^2}{x+5} \][/tex]
Second fraction:
[tex]\[ \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 2: Multiply the fractions.
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} = \frac{x^2 (x^2 + 4x - 5)}{(x + 5)(x^2 - 4x)} \][/tex]
Step 3: Simplify the resulting expression, if possible.
To simplify, let's factorize the numerator and the denominator:
- The numerator \(x^2 (x^2 + 4x - 5)\) is already factored as much as possible.
- The denominator \( (x + 5)(x^2 - 4x) \) can be factored further.
Notice that \( x^2 - 4x \) can be written as \( x(x - 4) \).
So, the expression becomes:
[tex]\[ \frac{x^2 (x^2 + 4x - 5)}{(x + 5)x(x - 4)} \][/tex]
Next, let's factorize \(x^2 + 4x - 5\). This factors to \( (x + 5)(x - 1) \).
Thus the expression now looks like:
[tex]\[ \frac{x^2 (x + 5)(x - 1)}{(x + 5)x(x - 4)} \][/tex]
Step 4: Cancel common factors in the numerator and the denominator.
The \( (x + 5) \) and one \( x \) in the numerator and denominator cancel out:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
So, the simplified form of the original product is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Therefore, the final simplified result is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.