Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve this step-by-step!
Given the problem:
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 1: Express the fractions separately.
First fraction:
[tex]\[ \frac{x^2}{x+5} \][/tex]
Second fraction:
[tex]\[ \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 2: Multiply the fractions.
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} = \frac{x^2 (x^2 + 4x - 5)}{(x + 5)(x^2 - 4x)} \][/tex]
Step 3: Simplify the resulting expression, if possible.
To simplify, let's factorize the numerator and the denominator:
- The numerator \(x^2 (x^2 + 4x - 5)\) is already factored as much as possible.
- The denominator \( (x + 5)(x^2 - 4x) \) can be factored further.
Notice that \( x^2 - 4x \) can be written as \( x(x - 4) \).
So, the expression becomes:
[tex]\[ \frac{x^2 (x^2 + 4x - 5)}{(x + 5)x(x - 4)} \][/tex]
Next, let's factorize \(x^2 + 4x - 5\). This factors to \( (x + 5)(x - 1) \).
Thus the expression now looks like:
[tex]\[ \frac{x^2 (x + 5)(x - 1)}{(x + 5)x(x - 4)} \][/tex]
Step 4: Cancel common factors in the numerator and the denominator.
The \( (x + 5) \) and one \( x \) in the numerator and denominator cancel out:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
So, the simplified form of the original product is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Therefore, the final simplified result is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Given the problem:
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 1: Express the fractions separately.
First fraction:
[tex]\[ \frac{x^2}{x+5} \][/tex]
Second fraction:
[tex]\[ \frac{x^2 + 4x - 5}{x^2 - 4x} \][/tex]
Step 2: Multiply the fractions.
[tex]\[ \frac{x^2}{x+5} \cdot \frac{x^2 + 4x - 5}{x^2 - 4x} = \frac{x^2 (x^2 + 4x - 5)}{(x + 5)(x^2 - 4x)} \][/tex]
Step 3: Simplify the resulting expression, if possible.
To simplify, let's factorize the numerator and the denominator:
- The numerator \(x^2 (x^2 + 4x - 5)\) is already factored as much as possible.
- The denominator \( (x + 5)(x^2 - 4x) \) can be factored further.
Notice that \( x^2 - 4x \) can be written as \( x(x - 4) \).
So, the expression becomes:
[tex]\[ \frac{x^2 (x^2 + 4x - 5)}{(x + 5)x(x - 4)} \][/tex]
Next, let's factorize \(x^2 + 4x - 5\). This factors to \( (x + 5)(x - 1) \).
Thus the expression now looks like:
[tex]\[ \frac{x^2 (x + 5)(x - 1)}{(x + 5)x(x - 4)} \][/tex]
Step 4: Cancel common factors in the numerator and the denominator.
The \( (x + 5) \) and one \( x \) in the numerator and denominator cancel out:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
So, the simplified form of the original product is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
Therefore, the final simplified result is:
[tex]\[ \frac{x(x - 1)}{x - 4} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.