Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's address each part of the question step-by-step, using the relation \( y = 20x + 20 \):
### Completing the Table
We need to use the equation \( y = 20x + 20 \) to find the missing values for \( y \) corresponding to given \( x \)-values.
Here are the calculations:
- For \( x = 1 \): \( y = 20(1) + 20 = 40 \)
- For \( x = 2 \): \( y = 20(2) + 20 = 60 \)
- For \( x = 4 \): \( y = 20(4) + 20 = 100 \)
- For \( x = 6 \): \( y = 20(6) + 20 = 140 \)
- For \( x = 8 \): \( y = 20(8) + 20 = 180 \)
- For \( x = 9 \): \( y = 20(9) + 20 = 200 \)
Now we can complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline y & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200 \\ \hline \end{array} \][/tex]
### Drawing the Graph
To draw the graph for the relation \( y = 20x + 20 \), use the following steps:
1. Draw a set of Cartesian coordinates using the given scale.
- On the x-axis: Use a scale of \( 2 \text{ cm} \) to \( 1 \text{ kg} \).
- On the y-axis: Use a scale of \( 2 \text{ cm} \) to \( \text{GH}c 20 \).
2. Plot the points from the table onto the graph:
- \((1, 40)\)
- \((2, 60)\)
- \((3, 80)\)
- \((4, 100)\)
- \((5, 120)\)
- \((6, 140)\)
- \((7, 160)\)
- \((8, 180)\)
- \((9, 200)\)
3. Connect these points with a straight line since the relation \( y = 20x + 20 \) is linear.
### Part (i): Finding the Weight of Meat That Can Be Bought with GHc 90
From the given relation, we need to find \( x \) when \( y = 90 \):
Solving \( 90 = 20x + 20 \):
[tex]\[ 90 = 20x + 20 \][/tex]
[tex]\[ 90 - 20 = 20x \][/tex]
[tex]\[ 70 = 20x \][/tex]
[tex]\[ x = \frac{70}{20} \][/tex]
[tex]\[ x = 3.5 \][/tex]
So, the weight of meat that can be bought with GHc 90 is \( 3.5 \text{ kg} \).
### Part (ii): Finding the Cost of 3.5 kg of Meat
For \( x = 3.5 \), we need to find \( y \):
[tex]\[ y = 20(3.5) + 20 \][/tex]
[tex]\[ y = 70 + 20 \][/tex]
[tex]\[ y = 90 \][/tex]
So, the cost of \( 3.5 \text{ kg} \) of meat is GHc 90.
### Part (iii): Finding the Kilograms of Meat That Can Be Bought for GHc 240
From the given relation, we need to find \( x \) when \( y = 240 \):
Solving \( 240 = 20x + 20 \):
[tex]\[ 240 = 20x + 20 \][/tex]
[tex]\[ 240 - 20 = 20x \][/tex]
[tex]\[ 220 = 20x \][/tex]
[tex]\[ x = \frac{220}{20} \][/tex]
[tex]\[ x = 11 \][/tex]
So, the kilograms of meat that can be bought at a cost of GHc 240 is [tex]\( 11 \text{ kg} \)[/tex].
### Completing the Table
We need to use the equation \( y = 20x + 20 \) to find the missing values for \( y \) corresponding to given \( x \)-values.
Here are the calculations:
- For \( x = 1 \): \( y = 20(1) + 20 = 40 \)
- For \( x = 2 \): \( y = 20(2) + 20 = 60 \)
- For \( x = 4 \): \( y = 20(4) + 20 = 100 \)
- For \( x = 6 \): \( y = 20(6) + 20 = 140 \)
- For \( x = 8 \): \( y = 20(8) + 20 = 180 \)
- For \( x = 9 \): \( y = 20(9) + 20 = 200 \)
Now we can complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline y & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200 \\ \hline \end{array} \][/tex]
### Drawing the Graph
To draw the graph for the relation \( y = 20x + 20 \), use the following steps:
1. Draw a set of Cartesian coordinates using the given scale.
- On the x-axis: Use a scale of \( 2 \text{ cm} \) to \( 1 \text{ kg} \).
- On the y-axis: Use a scale of \( 2 \text{ cm} \) to \( \text{GH}c 20 \).
2. Plot the points from the table onto the graph:
- \((1, 40)\)
- \((2, 60)\)
- \((3, 80)\)
- \((4, 100)\)
- \((5, 120)\)
- \((6, 140)\)
- \((7, 160)\)
- \((8, 180)\)
- \((9, 200)\)
3. Connect these points with a straight line since the relation \( y = 20x + 20 \) is linear.
### Part (i): Finding the Weight of Meat That Can Be Bought with GHc 90
From the given relation, we need to find \( x \) when \( y = 90 \):
Solving \( 90 = 20x + 20 \):
[tex]\[ 90 = 20x + 20 \][/tex]
[tex]\[ 90 - 20 = 20x \][/tex]
[tex]\[ 70 = 20x \][/tex]
[tex]\[ x = \frac{70}{20} \][/tex]
[tex]\[ x = 3.5 \][/tex]
So, the weight of meat that can be bought with GHc 90 is \( 3.5 \text{ kg} \).
### Part (ii): Finding the Cost of 3.5 kg of Meat
For \( x = 3.5 \), we need to find \( y \):
[tex]\[ y = 20(3.5) + 20 \][/tex]
[tex]\[ y = 70 + 20 \][/tex]
[tex]\[ y = 90 \][/tex]
So, the cost of \( 3.5 \text{ kg} \) of meat is GHc 90.
### Part (iii): Finding the Kilograms of Meat That Can Be Bought for GHc 240
From the given relation, we need to find \( x \) when \( y = 240 \):
Solving \( 240 = 20x + 20 \):
[tex]\[ 240 = 20x + 20 \][/tex]
[tex]\[ 240 - 20 = 20x \][/tex]
[tex]\[ 220 = 20x \][/tex]
[tex]\[ x = \frac{220}{20} \][/tex]
[tex]\[ x = 11 \][/tex]
So, the kilograms of meat that can be bought at a cost of GHc 240 is [tex]\( 11 \text{ kg} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.