Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the angles between \(0^\circ\) and \(360^\circ\) (inclusive) that satisfy the given equations, we will go through each equation step-by-step.
### Part a) \(2 \sin (x + 50^\circ) = 1\)
1. Isolate the sine term:
[tex]\[ 2 \sin (x + 50^\circ) = 1 \][/tex]
[tex]\[ \sin (x + 50^\circ) = \frac{1}{2} \][/tex]
2. Find the general solutions for the sine function:
Since \(\sin \theta = \frac{1}{2}\) at \(\theta = 30^\circ + 360^\circ n\) and \(150^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ x + 50^\circ = 30^\circ + 360^\circ n \][/tex]
[tex]\[ x + 50^\circ = 150^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = 30^\circ - 50^\circ + 360^\circ n = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ - 50^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ x = 30^\circ + 360^\circ n - 50^\circ = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ + 360^\circ n - 50^\circ = 100^\circ + 360^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\):
[tex]\[ x = -20^\circ \][/tex] (Not in the range 0° to 360°)
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\):
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(100^\circ\) and \(340^\circ\).
### Part b) \(\cos 3x = \sin \frac{\pi}{6}\)
1. Recognize that \(\sin \frac{\pi}{6} = \frac{1}{2}\):
[tex]\[ \cos 3x = \frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = \frac{1}{2}\) at \(\theta = 60^\circ + 360^\circ n\) and \(300^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the coefficient \(3x\):
[tex]\[ 3x = 60^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = 300^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = \frac{60^\circ + 360^\circ n}{3} = 20^\circ + 120^\circ n \][/tex]
[tex]\[ x = \frac{300^\circ + 360^\circ n}{3} = 100^\circ + 120^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 20^\circ \][/tex]
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 140^\circ \][/tex]
[tex]\[ x = 220^\circ \][/tex]
For \(n = 2\),
[tex]\[ x = 260^\circ \][/tex]
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ, \) and \(340^\circ\).
### Part c) \(\cos (2x + 20^\circ) = -\frac{1}{2}\)
1. Isolate the cosine term:
[tex]\[ \cos (2x + 20^\circ) = -\frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = -\frac{1}{2}\) at \(\theta = 120^\circ + 360^\circ n\) and \(240^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ 2x + 20^\circ = 120^\circ + 360^\circ n \][/tex]
[tex]\[ 2x + 20^\circ = 240^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ 2x = 120^\circ - 20^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ 2x = 240^\circ - 20^\circ + 360^\circ n = 220^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{100^\circ + 360^\circ n}{2} = 50^\circ + 180^\circ n \][/tex]
[tex]\[ x = \frac{220^\circ + 360^\circ n}{2} = 110^\circ + 180^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 50^\circ \][/tex]
[tex]\[ x = 110^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 230^\circ \][/tex]
[tex]\[ x = 290^\circ \][/tex]
Therefore, the solutions are \(50^\circ, 110^\circ, 230^\circ,\) and \(290^\circ\).
### Summary
- For part a), the angles that satisfy the equation are: \(100^\circ\) and \(340^\circ\).
- For part b), the angles that satisfy the equation are: \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ,\) and \(340^\circ\).
- For part c), the angles that satisfy the equation are: [tex]\(50^\circ, 110^\circ, 230^\circ,\)[/tex] and [tex]\(290^\circ\)[/tex].
### Part a) \(2 \sin (x + 50^\circ) = 1\)
1. Isolate the sine term:
[tex]\[ 2 \sin (x + 50^\circ) = 1 \][/tex]
[tex]\[ \sin (x + 50^\circ) = \frac{1}{2} \][/tex]
2. Find the general solutions for the sine function:
Since \(\sin \theta = \frac{1}{2}\) at \(\theta = 30^\circ + 360^\circ n\) and \(150^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ x + 50^\circ = 30^\circ + 360^\circ n \][/tex]
[tex]\[ x + 50^\circ = 150^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = 30^\circ - 50^\circ + 360^\circ n = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ - 50^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ x = 30^\circ + 360^\circ n - 50^\circ = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ + 360^\circ n - 50^\circ = 100^\circ + 360^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\):
[tex]\[ x = -20^\circ \][/tex] (Not in the range 0° to 360°)
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\):
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(100^\circ\) and \(340^\circ\).
### Part b) \(\cos 3x = \sin \frac{\pi}{6}\)
1. Recognize that \(\sin \frac{\pi}{6} = \frac{1}{2}\):
[tex]\[ \cos 3x = \frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = \frac{1}{2}\) at \(\theta = 60^\circ + 360^\circ n\) and \(300^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the coefficient \(3x\):
[tex]\[ 3x = 60^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = 300^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = \frac{60^\circ + 360^\circ n}{3} = 20^\circ + 120^\circ n \][/tex]
[tex]\[ x = \frac{300^\circ + 360^\circ n}{3} = 100^\circ + 120^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 20^\circ \][/tex]
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 140^\circ \][/tex]
[tex]\[ x = 220^\circ \][/tex]
For \(n = 2\),
[tex]\[ x = 260^\circ \][/tex]
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ, \) and \(340^\circ\).
### Part c) \(\cos (2x + 20^\circ) = -\frac{1}{2}\)
1. Isolate the cosine term:
[tex]\[ \cos (2x + 20^\circ) = -\frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = -\frac{1}{2}\) at \(\theta = 120^\circ + 360^\circ n\) and \(240^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ 2x + 20^\circ = 120^\circ + 360^\circ n \][/tex]
[tex]\[ 2x + 20^\circ = 240^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ 2x = 120^\circ - 20^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ 2x = 240^\circ - 20^\circ + 360^\circ n = 220^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{100^\circ + 360^\circ n}{2} = 50^\circ + 180^\circ n \][/tex]
[tex]\[ x = \frac{220^\circ + 360^\circ n}{2} = 110^\circ + 180^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 50^\circ \][/tex]
[tex]\[ x = 110^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 230^\circ \][/tex]
[tex]\[ x = 290^\circ \][/tex]
Therefore, the solutions are \(50^\circ, 110^\circ, 230^\circ,\) and \(290^\circ\).
### Summary
- For part a), the angles that satisfy the equation are: \(100^\circ\) and \(340^\circ\).
- For part b), the angles that satisfy the equation are: \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ,\) and \(340^\circ\).
- For part c), the angles that satisfy the equation are: [tex]\(50^\circ, 110^\circ, 230^\circ,\)[/tex] and [tex]\(290^\circ\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.