Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the angles between \(0^\circ\) and \(360^\circ\) (inclusive) that satisfy the given equations, we will go through each equation step-by-step.
### Part a) \(2 \sin (x + 50^\circ) = 1\)
1. Isolate the sine term:
[tex]\[ 2 \sin (x + 50^\circ) = 1 \][/tex]
[tex]\[ \sin (x + 50^\circ) = \frac{1}{2} \][/tex]
2. Find the general solutions for the sine function:
Since \(\sin \theta = \frac{1}{2}\) at \(\theta = 30^\circ + 360^\circ n\) and \(150^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ x + 50^\circ = 30^\circ + 360^\circ n \][/tex]
[tex]\[ x + 50^\circ = 150^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = 30^\circ - 50^\circ + 360^\circ n = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ - 50^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ x = 30^\circ + 360^\circ n - 50^\circ = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ + 360^\circ n - 50^\circ = 100^\circ + 360^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\):
[tex]\[ x = -20^\circ \][/tex] (Not in the range 0° to 360°)
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\):
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(100^\circ\) and \(340^\circ\).
### Part b) \(\cos 3x = \sin \frac{\pi}{6}\)
1. Recognize that \(\sin \frac{\pi}{6} = \frac{1}{2}\):
[tex]\[ \cos 3x = \frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = \frac{1}{2}\) at \(\theta = 60^\circ + 360^\circ n\) and \(300^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the coefficient \(3x\):
[tex]\[ 3x = 60^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = 300^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = \frac{60^\circ + 360^\circ n}{3} = 20^\circ + 120^\circ n \][/tex]
[tex]\[ x = \frac{300^\circ + 360^\circ n}{3} = 100^\circ + 120^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 20^\circ \][/tex]
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 140^\circ \][/tex]
[tex]\[ x = 220^\circ \][/tex]
For \(n = 2\),
[tex]\[ x = 260^\circ \][/tex]
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ, \) and \(340^\circ\).
### Part c) \(\cos (2x + 20^\circ) = -\frac{1}{2}\)
1. Isolate the cosine term:
[tex]\[ \cos (2x + 20^\circ) = -\frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = -\frac{1}{2}\) at \(\theta = 120^\circ + 360^\circ n\) and \(240^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ 2x + 20^\circ = 120^\circ + 360^\circ n \][/tex]
[tex]\[ 2x + 20^\circ = 240^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ 2x = 120^\circ - 20^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ 2x = 240^\circ - 20^\circ + 360^\circ n = 220^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{100^\circ + 360^\circ n}{2} = 50^\circ + 180^\circ n \][/tex]
[tex]\[ x = \frac{220^\circ + 360^\circ n}{2} = 110^\circ + 180^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 50^\circ \][/tex]
[tex]\[ x = 110^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 230^\circ \][/tex]
[tex]\[ x = 290^\circ \][/tex]
Therefore, the solutions are \(50^\circ, 110^\circ, 230^\circ,\) and \(290^\circ\).
### Summary
- For part a), the angles that satisfy the equation are: \(100^\circ\) and \(340^\circ\).
- For part b), the angles that satisfy the equation are: \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ,\) and \(340^\circ\).
- For part c), the angles that satisfy the equation are: [tex]\(50^\circ, 110^\circ, 230^\circ,\)[/tex] and [tex]\(290^\circ\)[/tex].
### Part a) \(2 \sin (x + 50^\circ) = 1\)
1. Isolate the sine term:
[tex]\[ 2 \sin (x + 50^\circ) = 1 \][/tex]
[tex]\[ \sin (x + 50^\circ) = \frac{1}{2} \][/tex]
2. Find the general solutions for the sine function:
Since \(\sin \theta = \frac{1}{2}\) at \(\theta = 30^\circ + 360^\circ n\) and \(150^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ x + 50^\circ = 30^\circ + 360^\circ n \][/tex]
[tex]\[ x + 50^\circ = 150^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = 30^\circ - 50^\circ + 360^\circ n = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ - 50^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ x = 30^\circ + 360^\circ n - 50^\circ = -20^\circ + 360^\circ n \][/tex]
[tex]\[ x = 150^\circ + 360^\circ n - 50^\circ = 100^\circ + 360^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\):
[tex]\[ x = -20^\circ \][/tex] (Not in the range 0° to 360°)
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\):
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(100^\circ\) and \(340^\circ\).
### Part b) \(\cos 3x = \sin \frac{\pi}{6}\)
1. Recognize that \(\sin \frac{\pi}{6} = \frac{1}{2}\):
[tex]\[ \cos 3x = \frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = \frac{1}{2}\) at \(\theta = 60^\circ + 360^\circ n\) and \(300^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the coefficient \(3x\):
[tex]\[ 3x = 60^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = 300^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ x = \frac{60^\circ + 360^\circ n}{3} = 20^\circ + 120^\circ n \][/tex]
[tex]\[ x = \frac{300^\circ + 360^\circ n}{3} = 100^\circ + 120^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 20^\circ \][/tex]
[tex]\[ x = 100^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 140^\circ \][/tex]
[tex]\[ x = 220^\circ \][/tex]
For \(n = 2\),
[tex]\[ x = 260^\circ \][/tex]
[tex]\[ x = 340^\circ \][/tex]
Therefore, the solutions are \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ, \) and \(340^\circ\).
### Part c) \(\cos (2x + 20^\circ) = -\frac{1}{2}\)
1. Isolate the cosine term:
[tex]\[ \cos (2x + 20^\circ) = -\frac{1}{2} \][/tex]
2. Find the general solutions for the cosine function:
Since \(\cos \theta = -\frac{1}{2}\) at \(\theta = 120^\circ + 360^\circ n\) and \(240^\circ + 360^\circ n\) for integer values of \(n\).
3. Adjust for the phase shift:
[tex]\[ 2x + 20^\circ = 120^\circ + 360^\circ n \][/tex]
[tex]\[ 2x + 20^\circ = 240^\circ + 360^\circ n \][/tex]
4. Solve for \(x\):
[tex]\[ 2x = 120^\circ - 20^\circ + 360^\circ n = 100^\circ + 360^\circ n \][/tex]
[tex]\[ 2x = 240^\circ - 20^\circ + 360^\circ n = 220^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{100^\circ + 360^\circ n}{2} = 50^\circ + 180^\circ n \][/tex]
[tex]\[ x = \frac{220^\circ + 360^\circ n}{2} = 110^\circ + 180^\circ n \][/tex]
5. Plug in values of \(n\) to find solutions within \(0^\circ\) to \(360^\circ\):
For \(n = 0\),
[tex]\[ x = 50^\circ \][/tex]
[tex]\[ x = 110^\circ \][/tex]
For \(n = 1\),
[tex]\[ x = 230^\circ \][/tex]
[tex]\[ x = 290^\circ \][/tex]
Therefore, the solutions are \(50^\circ, 110^\circ, 230^\circ,\) and \(290^\circ\).
### Summary
- For part a), the angles that satisfy the equation are: \(100^\circ\) and \(340^\circ\).
- For part b), the angles that satisfy the equation are: \(20^\circ, 100^\circ, 140^\circ, 220^\circ, 260^\circ,\) and \(340^\circ\).
- For part c), the angles that satisfy the equation are: [tex]\(50^\circ, 110^\circ, 230^\circ,\)[/tex] and [tex]\(290^\circ\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.