Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to determine the probability that the number of students receiving a [tex]$B$[/tex] or above on the final exam is between 45 and 46 in an accounting class. Let's break it down step by step.
1. Understand the parameters given:
- Sample size (\( n \)) = 85
- Population mean (\( \mu \)) = 22
- Population standard deviation (\( \sigma \)) = 13
- We're interested in the interval [19, 23] for the lower and upper bounds.
2. Convert the raw scores (lower bound and upper bound) to z-scores:
- The formula for converting a raw score \( X \) to a z-score is:
[tex]\[ z = \frac{X - \mu}{\sigma / \sqrt{n}} \][/tex]
3. Calculate the z-scores:
- For the lower bound (19):
[tex]\[ z_{\text{lower}} = \frac{19 - 22}{13 / \sqrt{85}} = -2.13 \][/tex]
- For the upper bound (23):
[tex]\[ z_{\text{upper}} = \frac{23 - 22}{13 / \sqrt{85}} = 0.71 \][/tex]
4. Use the Standard Normal Table to find the cumulative probabilities (Φ) for the z-scores:
- For \( z_{\text{lower}} = -2.13 \):
[tex]\[ \Phi(-2.13) \approx 1 - \Phi(2.13) = 1 - 0.9834 = 0.0166 \][/tex]
- For \( z_{\text{upper}} = 0.71 \):
[tex]\[ \Phi(0.71) = 0.7611 \][/tex]
5. Calculate the probability within the z-score range:
[tex]\[ P(19 \leq X \leq 23) = \Phi(0.71) - \Phi(-2.13) = 0.7611 - 0.0166 = 0.7445 \][/tex]
6. Round the final answer to two decimal places:
[tex]\[ \boxed{0.74} \][/tex]
In conclusion, the probability that between 45 or 46 students receive a [tex]$B$[/tex] or above is [tex]\( 0.74 \)[/tex] or 74%.
1. Understand the parameters given:
- Sample size (\( n \)) = 85
- Population mean (\( \mu \)) = 22
- Population standard deviation (\( \sigma \)) = 13
- We're interested in the interval [19, 23] for the lower and upper bounds.
2. Convert the raw scores (lower bound and upper bound) to z-scores:
- The formula for converting a raw score \( X \) to a z-score is:
[tex]\[ z = \frac{X - \mu}{\sigma / \sqrt{n}} \][/tex]
3. Calculate the z-scores:
- For the lower bound (19):
[tex]\[ z_{\text{lower}} = \frac{19 - 22}{13 / \sqrt{85}} = -2.13 \][/tex]
- For the upper bound (23):
[tex]\[ z_{\text{upper}} = \frac{23 - 22}{13 / \sqrt{85}} = 0.71 \][/tex]
4. Use the Standard Normal Table to find the cumulative probabilities (Φ) for the z-scores:
- For \( z_{\text{lower}} = -2.13 \):
[tex]\[ \Phi(-2.13) \approx 1 - \Phi(2.13) = 1 - 0.9834 = 0.0166 \][/tex]
- For \( z_{\text{upper}} = 0.71 \):
[tex]\[ \Phi(0.71) = 0.7611 \][/tex]
5. Calculate the probability within the z-score range:
[tex]\[ P(19 \leq X \leq 23) = \Phi(0.71) - \Phi(-2.13) = 0.7611 - 0.0166 = 0.7445 \][/tex]
6. Round the final answer to two decimal places:
[tex]\[ \boxed{0.74} \][/tex]
In conclusion, the probability that between 45 or 46 students receive a [tex]$B$[/tex] or above is [tex]\( 0.74 \)[/tex] or 74%.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.