Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
We want to find the probability that either 45 or 46 students out of 84 will receive a B or above on the final exam. Given that the number of students, \(X\), follows a normal distribution \(N(42, 4.6)\) with a mean \(\mu = 42\) and standard deviation \(\sigma = 4.6\), we need to calculate the probabilities for \(X = 45\) and \(X = 46\).
First, let's standardize the values using the z-score formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
1. For \(X = 45\):
[tex]\[ Z = \frac{45 - 42}{4.6} \approx \frac{3}{4.6} \approx 0.652 \][/tex]
2. For \(X = 46\):
[tex]\[ Z = \frac{46 - 42}{4.6} \approx \frac{4}{4.6} \approx 0.870 \][/tex]
Now we need to determine the probabilities associated with these z-scores using the standard normal distribution table.
3. Finding the cumulative probability for \(Z = 0.652\):
Using the standard normal table, we need to find the value closest to \(Z = 0.652\). Looking at the z-table, we can see \(Z = 0.65\) is approximately 0.7422 (since 0.652 is very close to 0.65).
4. Finding the cumulative probability for \(Z = 0.870\):
Similarly, for \(Z = 0.870\), the corresponding probability from the table is 0.8078.
Next, we find the probability that \(X\) is between 45 and 46:
[tex]\[ P(45 \le X \le 46) = P(X \le 46) - P(X \le 45) \][/tex]
Using the cumulative probabilities:
[tex]\[ P(45 \le X \le 46) = 0.8078 - 0.7422 = 0.0656 \][/tex]
Thus, the probability that either 45 or 46 students will receive a B or above on the final exam is approximately [tex]\(0.0656\)[/tex] or [tex]\(6.56\%\)[/tex].
First, let's standardize the values using the z-score formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
1. For \(X = 45\):
[tex]\[ Z = \frac{45 - 42}{4.6} \approx \frac{3}{4.6} \approx 0.652 \][/tex]
2. For \(X = 46\):
[tex]\[ Z = \frac{46 - 42}{4.6} \approx \frac{4}{4.6} \approx 0.870 \][/tex]
Now we need to determine the probabilities associated with these z-scores using the standard normal distribution table.
3. Finding the cumulative probability for \(Z = 0.652\):
Using the standard normal table, we need to find the value closest to \(Z = 0.652\). Looking at the z-table, we can see \(Z = 0.65\) is approximately 0.7422 (since 0.652 is very close to 0.65).
4. Finding the cumulative probability for \(Z = 0.870\):
Similarly, for \(Z = 0.870\), the corresponding probability from the table is 0.8078.
Next, we find the probability that \(X\) is between 45 and 46:
[tex]\[ P(45 \le X \le 46) = P(X \le 46) - P(X \le 45) \][/tex]
Using the cumulative probabilities:
[tex]\[ P(45 \le X \le 46) = 0.8078 - 0.7422 = 0.0656 \][/tex]
Thus, the probability that either 45 or 46 students will receive a B or above on the final exam is approximately [tex]\(0.0656\)[/tex] or [tex]\(6.56\%\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.