At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

As in the previous problem, a fair coin is flipped 88 times. If [tex]$X[tex]$[/tex] is the number of heads, then the distribution of [tex]$[/tex]X[tex]$[/tex] can be approximated with a normal distribution, [tex]$[/tex]N(44,4.7)[tex]$[/tex], where the mean [tex]$[/tex](\mu)[tex]$[/tex] is 44 and standard deviation [tex]$[/tex](\sigma)$[/tex] is 4.7.

Using this approximation, find the probability of flipping 48 or 49 heads. You may use the portion of the Standard Normal Table below.

\begin{tabular}{c|cccccccccc}
[tex]$z$[/tex] & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\
\hline 0.7 & 0.7580 & 0.7611 & 0.7642 & 0.7673 & 0.7704 & 0.7734 & 0.7764 & 0.7794 & 0.7823 & 0.7852 \\
0.8 & 0.7881 & 0.7910 & 0.7939 & 0.7967 & 0.7995 & 0.8023 & 0.8051 & 0.8078 & 0.8106 & 0.8133 \\
0.9 & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389 \\
1.0 & 0.8413 & 0.8438 & 0.8461 & 0.8485 & 0.8508 & 0.8531 & 0.8554 & 0.8577 & 0.8599 & 0.8621 \\
1.1 & 0.8643 & 0.8665 & 0.8686 & 0.8708 & 0.8729 & 0.8749 & 0.8770 & 0.8790 & 0.8810 & 0.8830 \\
1.2 & 0.8849 & 0.8869 & 0.8888 & 0.8907 & 0.8925 & 0.8944 & 0.8962 & 0.8980 & 0.8997 & 0.9015
\end{tabular}

Round the final answer to two decimal places.


Sagot :

To solve this problem, we need to determine the probability of flipping 48 or 49 heads out of 88 flips. We are told that the number of heads, \(X\), follows an approximate normal distribution \(N(44, 4.7)\), where the mean \(\mu\) is 44 and the standard deviation \(\sigma\) is 4.7. Here's how we can solve it step by step:

1. Convert the given number of heads (48 and 49) into z-scores.

The z-score formula is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]

- For \(X = 48\):
[tex]\[ z_{48} = \frac{48 - 44}{4.7} = \frac{4}{4.7} \approx 0.8511 \][/tex]

- For \(X = 49\):
[tex]\[ z_{49} = \frac{49 - 44}{4.7} = \frac{5}{4.7} \approx 1.0638 \][/tex]

2. Find the cumulative probability associated with each z-score using the standard normal table.

- For \(z_{48} = 0.8511\):
- To find the probability, we look up the closest value for \(z = 0.85\) in the table.
[tex]\[ P(Z \leq 0.85) \approx 0.8023 \][/tex]
- Since 0.8511 is closer to 0.85 than 0.86, we approximate:
[tex]\[ P(Z \leq 0.8511) \approx 0.8026 \][/tex]

- For \(z_{49} = 1.0638\):
- To find the probability, we look up the closest value for \(z = 1.06\) in the table.
[tex]\[ P(Z \leq 1.06) \approx 0.8554 \][/tex]
- Since 1.0638 is closer to 1.06 than 1.07, we approximate:
[tex]\[ P(Z \leq 1.0638) \approx 0.8563 \][/tex]

3. Calculate the probability of flipping between 48 and 49 heads.

The probability of flipping between 48 and 49 heads is the difference in the cumulative probabilities:
[tex]\[ P(48 \leq X \leq 49) = P(Z \leq 1.0638) - P(Z \leq 0.8511) \][/tex]

Substitute the values:
[tex]\[ P(48 \leq X \leq 49) \approx 0.8563 - 0.8026 = 0.0537 \][/tex]

4. Round the final answer to two decimal places:
[tex]\[ \text{Rounded probability} \approx 0.05 \][/tex]

Therefore, the probability of flipping 48 or 49 heads out of 88 flips is approximately [tex]\(0.05\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.