Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly, let's break down the problem step by step.
First, we will analyze the given data:
1. Tina has a total of 48 rabbits.
2. Out of these, 32 rabbits are male.
3. Therefore, the number of female rabbits is \( 48 - 32 = 16 \).
4. We know that 9 of the female rabbits are black.
5. Also, 14 of the male rabbits are white.
### Part a) Constructing the Two-Way Table
We need to categorize the rabbits by both color and gender. We'll complete the two-way table by filling in the known information and deducing the unknowns.
#### Step 1: Determine the number of white female rabbits.
- Total female rabbits: 16
- Black female rabbits: 9
- Thus, white female rabbits \( = 16 - 9 = 7 \)
#### Step 2: Determine the number of black male rabbits.
- Total male rabbits: 32
- White male rabbits: 14
- Thus, black male rabbits \( = 32 - 14 = 18 \)
#### Step 3: Calculate the totals for each color.
- Number of white rabbits:
- White male rabbits \( = 14 \)
- White female rabbits \( = 7 \)
- Total white rabbits \( = 14 + 7 = 21 \)
- Number of black rabbits:
- Black male rabbits \( = 18 \)
- Black female rabbits \( = 9 \)
- Total black rabbits \( = 18 + 9 = 27 \)
Now, the two-way table looks like this:
\begin{tabular}{|c|c|c|}
\hline
& Male & Female & Total \\
\hline
White & 14 & 7 & 21 \\
\hline
Black & 18 & 9 & 27 \\
\hline
Total & 32 & 16 & 48 \\
\hline
\end{tabular}
This completes part (a) of the question.
### Part b) Finding the Probability of Choosing a White Female Rabbit
To find the probability that a randomly chosen rabbit is a white female, we use the following formula for probability:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} \][/tex]
In this case:
- The number of favorable outcomes (white female rabbits) \( = 7 \)
- The total number of possible outcomes (total rabbits) \( = 48 \)
Thus, the probability is:
[tex]\[ \text{Probability}(\text{white female rabbit}) = \frac{7}{48} \][/tex]
So the detailed answers to the questions are:
a) The two-way table is completed as shown.
b) The probability that a randomly chosen rabbit is a white female rabbit is [tex]\( \frac{7}{48} \approx 0.1458 \)[/tex] or about 14.58%.
First, we will analyze the given data:
1. Tina has a total of 48 rabbits.
2. Out of these, 32 rabbits are male.
3. Therefore, the number of female rabbits is \( 48 - 32 = 16 \).
4. We know that 9 of the female rabbits are black.
5. Also, 14 of the male rabbits are white.
### Part a) Constructing the Two-Way Table
We need to categorize the rabbits by both color and gender. We'll complete the two-way table by filling in the known information and deducing the unknowns.
#### Step 1: Determine the number of white female rabbits.
- Total female rabbits: 16
- Black female rabbits: 9
- Thus, white female rabbits \( = 16 - 9 = 7 \)
#### Step 2: Determine the number of black male rabbits.
- Total male rabbits: 32
- White male rabbits: 14
- Thus, black male rabbits \( = 32 - 14 = 18 \)
#### Step 3: Calculate the totals for each color.
- Number of white rabbits:
- White male rabbits \( = 14 \)
- White female rabbits \( = 7 \)
- Total white rabbits \( = 14 + 7 = 21 \)
- Number of black rabbits:
- Black male rabbits \( = 18 \)
- Black female rabbits \( = 9 \)
- Total black rabbits \( = 18 + 9 = 27 \)
Now, the two-way table looks like this:
\begin{tabular}{|c|c|c|}
\hline
& Male & Female & Total \\
\hline
White & 14 & 7 & 21 \\
\hline
Black & 18 & 9 & 27 \\
\hline
Total & 32 & 16 & 48 \\
\hline
\end{tabular}
This completes part (a) of the question.
### Part b) Finding the Probability of Choosing a White Female Rabbit
To find the probability that a randomly chosen rabbit is a white female, we use the following formula for probability:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} \][/tex]
In this case:
- The number of favorable outcomes (white female rabbits) \( = 7 \)
- The total number of possible outcomes (total rabbits) \( = 48 \)
Thus, the probability is:
[tex]\[ \text{Probability}(\text{white female rabbit}) = \frac{7}{48} \][/tex]
So the detailed answers to the questions are:
a) The two-way table is completed as shown.
b) The probability that a randomly chosen rabbit is a white female rabbit is [tex]\( \frac{7}{48} \approx 0.1458 \)[/tex] or about 14.58%.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.