Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the length and width of the TV with a given diagonal of 30 inches, we utilize the properties of a [tex]$30-60-90$[/tex] right triangle.
### Step-by-Step Solution:
1. Identify the properties of a [tex]$30-60-90$[/tex] triangle:
In a [tex]$30-60-90$[/tex] triangle, the sides are in a specific ratio:
- The shortest side (opposite the [tex]$30^\circ$[/tex] angle) is of length \( x \).
- The side opposite the [tex]$60^\circ$[/tex] angle (the longer leg) is \( x\sqrt{3} \).
- The hypotenuse (the side opposite the right angle, which in this case is the diagonal of the TV) is \( 2x \).
2. Given the diagonal (hypotenuse) is 30 inches:
We use the fact that the hypotenuse in a [tex]$30-60-90$[/tex] triangle is \( 2x \).
[tex]\[ 2x = 30 \][/tex]
3. Solve for \( x \):
[tex]\[ x = \frac{30}{2} = 15 \][/tex]
4. Determine the lengths of the sides:
- The shorter leg (opposite the [tex]$30^\circ$[/tex] angle) is \( x = 15 \) inches.
- The longer leg (opposite the [tex]$60^\circ$[/tex] angle) is \( x\sqrt{3} = 15\sqrt{3} \) inches.
5. Result:
The lengths corresponding to the sides of the triangle are therefore 15 inches and 15\(\sqrt{3}\) inches respectively.
Combining these steps, the length and width of the TV are 15 inches and \( 15\sqrt{3} \) inches, respectively.
Therefore, the correct answer is:
[tex]\[ \boxed{ \text{B. } 15 \text{ inches by } 15 \sqrt{3} \text{ inches}} \][/tex]
### Step-by-Step Solution:
1. Identify the properties of a [tex]$30-60-90$[/tex] triangle:
In a [tex]$30-60-90$[/tex] triangle, the sides are in a specific ratio:
- The shortest side (opposite the [tex]$30^\circ$[/tex] angle) is of length \( x \).
- The side opposite the [tex]$60^\circ$[/tex] angle (the longer leg) is \( x\sqrt{3} \).
- The hypotenuse (the side opposite the right angle, which in this case is the diagonal of the TV) is \( 2x \).
2. Given the diagonal (hypotenuse) is 30 inches:
We use the fact that the hypotenuse in a [tex]$30-60-90$[/tex] triangle is \( 2x \).
[tex]\[ 2x = 30 \][/tex]
3. Solve for \( x \):
[tex]\[ x = \frac{30}{2} = 15 \][/tex]
4. Determine the lengths of the sides:
- The shorter leg (opposite the [tex]$30^\circ$[/tex] angle) is \( x = 15 \) inches.
- The longer leg (opposite the [tex]$60^\circ$[/tex] angle) is \( x\sqrt{3} = 15\sqrt{3} \) inches.
5. Result:
The lengths corresponding to the sides of the triangle are therefore 15 inches and 15\(\sqrt{3}\) inches respectively.
Combining these steps, the length and width of the TV are 15 inches and \( 15\sqrt{3} \) inches, respectively.
Therefore, the correct answer is:
[tex]\[ \boxed{ \text{B. } 15 \text{ inches by } 15 \sqrt{3} \text{ inches}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.