Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Use trigonometric identities to simplify the expression:

[tex]\[ \csc (-\beta) \tan (\beta) \][/tex]

Sagot :

Let's start by breaking down and simplifying the given expression step-by-step:

Given:
[tex]\[ \csc(-\beta) \cdot \tan(\beta) \][/tex]

### Step 1: Use the Trigonometric Identity for Cosecant

Recall that \(\csc(x) = \frac{1}{\sin(x)}\). Additionally, the cosecant function has this property when dealing with negative angles:
[tex]\[ \csc(-\beta) = -\csc(\beta) \][/tex]

Thus,
[tex]\[ \csc(-\beta) = -\frac{1}{\sin(\beta)} \][/tex]

### Step 2: Substitution

Substitute \(\csc(-\beta)\) with \(-\frac{1}{\sin(\beta)}\) in the given expression:
[tex]\[ \csc(-\beta) \cdot \tan(\beta) = \left( -\frac{1}{\sin(\beta)} \right) \cdot \tan(\beta) \][/tex]

### Step 3: Express Tangent in Terms of Sine and Cosine

Recall that \(\tan(x) = \frac{\sin(x)}{\cos(x)}\). So we can rewrite \(\tan(\beta)\):
[tex]\[ \tan(\beta) = \frac{\sin(\beta)}{\cos(\beta)} \][/tex]

### Step 4: Substitute Tangent Expression

Now, substitute \(\tan(\beta)\) in the simplified expression:
[tex]\[ -\frac{1}{\sin(\beta)} \cdot \frac{\sin(\beta)}{\cos(\beta)} \][/tex]

### Step 5: Simplify the Expression

When we multiply these terms:
[tex]\[ -\frac{1}{\sin(\beta)} \cdot \frac{\sin(\beta)}{\cos(\beta)} = -\frac{\sin(\beta)}{\sin(\beta) \cos(\beta)} = -\frac{1}{\cos(\beta)} \][/tex]

Thus, the simplified expression is:
[tex]\[ -\frac{1}{\cos(\beta)} \][/tex]

### Step 6: Use the Trigonometric Identity for Secant

Recall that \(\sec(x) = \frac{1}{\cos(x)}\). This allows another way to express the result:
[tex]\[ -\frac{1}{\cos(\beta)} = -\sec(\beta) \][/tex]

However, keeping it in the fraction form is often more useful for clarity in various contexts.

### Final Answer

After simplifying the given expression \( \csc(-\beta) \cdot \tan(\beta) \), we get:
[tex]\[ -\frac{1}{\cos(\beta)} \][/tex]