Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the magnetic force exerted on a charge moving perpendicular to a magnetic field, we use the formula for the magnetic force on a moving charge:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- \( F \) is the magnetic force,
- \( q \) is the charge,
- \( v \) is the velocity,
- \( B \) is the magnetic field.
Given:
- The charge \( q = 4.88 \times 10^{-6} \) C (Coulombs),
- The velocity \( v = 265 \) m/s (meters per second),
- The magnetic field \( B = 0.0579 \) T (Teslas).
First, we calculate the magnitude of the magnetic force:
[tex]\[ F = 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} \times 0.0579 \, \text{T} \][/tex]
Perform the multiplication step-by-step:
1. Multiply the charge by the velocity:
[tex]\[ 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} = 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field:
[tex]\[ 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \times 0.0579 \, \text{T} \][/tex]
[tex]\[ = 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Now, we express the result \( 7.487627999999999 \times 10^{-5} \) N in the form \( A \times 10^B \) N:
Here,
- \( A \) is the coefficient,
- \( B \) is the exponent.
So, the magnetic force on the charge can be expressed as:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Therefore, the magnetic force on the charge is:
[tex]\[ \boxed{7.487627999999999 \times 10^{-5} \, \text{N}} \][/tex]
Highlighting the coefficient and the exponent:
[tex]\[ \text{Coefficient: } 7.487627999999999 \][/tex]
[tex]\[ \text{Exponent: } -5 \][/tex]
So, the final answer is:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Here, the coefficient is [tex]\( \boxed{7.487627999999999} \)[/tex] and the exponent is [tex]\( \boxed{-5} \)[/tex].
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- \( F \) is the magnetic force,
- \( q \) is the charge,
- \( v \) is the velocity,
- \( B \) is the magnetic field.
Given:
- The charge \( q = 4.88 \times 10^{-6} \) C (Coulombs),
- The velocity \( v = 265 \) m/s (meters per second),
- The magnetic field \( B = 0.0579 \) T (Teslas).
First, we calculate the magnitude of the magnetic force:
[tex]\[ F = 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} \times 0.0579 \, \text{T} \][/tex]
Perform the multiplication step-by-step:
1. Multiply the charge by the velocity:
[tex]\[ 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} = 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field:
[tex]\[ 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \times 0.0579 \, \text{T} \][/tex]
[tex]\[ = 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Now, we express the result \( 7.487627999999999 \times 10^{-5} \) N in the form \( A \times 10^B \) N:
Here,
- \( A \) is the coefficient,
- \( B \) is the exponent.
So, the magnetic force on the charge can be expressed as:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Therefore, the magnetic force on the charge is:
[tex]\[ \boxed{7.487627999999999 \times 10^{-5} \, \text{N}} \][/tex]
Highlighting the coefficient and the exponent:
[tex]\[ \text{Coefficient: } 7.487627999999999 \][/tex]
[tex]\[ \text{Exponent: } -5 \][/tex]
So, the final answer is:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Here, the coefficient is [tex]\( \boxed{7.487627999999999} \)[/tex] and the exponent is [tex]\( \boxed{-5} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.