At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the system of equations using graphing, follow these steps:
Given the system of equations:
1. \(\frac{7}{3} x + y = 0.4\)
2. \(0.6 x - y = 4\)
Step-by-Step Solution:
1. Rewrite the equations in slope-intercept form (\(y = mx + b\)).
For the first equation:
[tex]\[\frac{7}{3} x + y = 0.4\][/tex]
Isolate \( y \):
[tex]\[y = -\frac{7}{3} x + 0.4\][/tex]
For the second equation:
\(0.6 x - y = 4\)
Isolate \( y \):
[tex]\[y = 0.6 x - 4\][/tex]
2. Graph the two equations:
- The first equation: \( y = -\frac{7}{3} x + 0.4 \)
- This is a line with a slope of \(-\frac{7}{3}\) and y-intercept at \(0.4\).
- The second equation: \( y = 0.6 x - 4 \)
- This is a line with a slope of \(0.6\) and y-intercept at \(-4\).
3. Find the point of intersection of these two lines.
Using a graphing calculator, plot both equations:
[tex]\[ y = -\frac{7}{3} x + 0.4 \][/tex]
[tex]\[ y = 0.6 x - 4 \][/tex]
4. Determine the coordinates of the intersection point:
The graphing calculator reveals the intersection of the two lines which represents the solution to the system of equations.
The intersection point (solution) is approximately:
[tex]\[ \left(1.500, -3.100\right) \][/tex]
Thus, the solution set is [tex]\( \{ (1.500, -3.100) \} \)[/tex].
Given the system of equations:
1. \(\frac{7}{3} x + y = 0.4\)
2. \(0.6 x - y = 4\)
Step-by-Step Solution:
1. Rewrite the equations in slope-intercept form (\(y = mx + b\)).
For the first equation:
[tex]\[\frac{7}{3} x + y = 0.4\][/tex]
Isolate \( y \):
[tex]\[y = -\frac{7}{3} x + 0.4\][/tex]
For the second equation:
\(0.6 x - y = 4\)
Isolate \( y \):
[tex]\[y = 0.6 x - 4\][/tex]
2. Graph the two equations:
- The first equation: \( y = -\frac{7}{3} x + 0.4 \)
- This is a line with a slope of \(-\frac{7}{3}\) and y-intercept at \(0.4\).
- The second equation: \( y = 0.6 x - 4 \)
- This is a line with a slope of \(0.6\) and y-intercept at \(-4\).
3. Find the point of intersection of these two lines.
Using a graphing calculator, plot both equations:
[tex]\[ y = -\frac{7}{3} x + 0.4 \][/tex]
[tex]\[ y = 0.6 x - 4 \][/tex]
4. Determine the coordinates of the intersection point:
The graphing calculator reveals the intersection of the two lines which represents the solution to the system of equations.
The intersection point (solution) is approximately:
[tex]\[ \left(1.500, -3.100\right) \][/tex]
Thus, the solution set is [tex]\( \{ (1.500, -3.100) \} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.