Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Express the following using inverse notation:

[tex]\[ \frac{2}{n+1} \][/tex]

Sagot :

Certainly! To find the inverse of the function
[tex]\[ f(n) = \frac{2}{n+1} \][/tex]
we will follow a series of steps to express the given equation in terms of its inverse.

1. Introduce a new variable: Let
[tex]\[ y = f(n) = \frac{2}{n+1} \][/tex]

2. Express the function in terms of \( y \): We need to rearrange the equation
[tex]\[ y = \frac{2}{n+1} \][/tex]
to isolate \( n \).

3. Multiply both sides by \( n + 1 \) to clear the fraction:
[tex]\[ y(n + 1) = 2 \][/tex]

4. Distribute \( y \) on the left-hand side:
[tex]\[ yn + y = 2 \][/tex]

5. Isolate \( n \): Subtract \( y \) from both sides to get:
[tex]\[ yn = 2 - y \][/tex]

6. Solve for \( n \): Divide both sides by \( y \):
[tex]\[ n = \frac{2 - y}{y} \][/tex]

Thus, the inverse function, expressed as \( n \) in terms of \( y \), is:
[tex]\[ f^{-1}(y) = \frac{2 - y}{y} \][/tex]

So the inverse of the function \( \frac{2}{n+1} \) is:
[tex]\[ \frac{2 - y}{y} \][/tex]