Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Express the following using inverse notation:

[tex]\[ \frac{2}{n+1} \][/tex]


Sagot :

Certainly! To find the inverse of the function
[tex]\[ f(n) = \frac{2}{n+1} \][/tex]
we will follow a series of steps to express the given equation in terms of its inverse.

1. Introduce a new variable: Let
[tex]\[ y = f(n) = \frac{2}{n+1} \][/tex]

2. Express the function in terms of \( y \): We need to rearrange the equation
[tex]\[ y = \frac{2}{n+1} \][/tex]
to isolate \( n \).

3. Multiply both sides by \( n + 1 \) to clear the fraction:
[tex]\[ y(n + 1) = 2 \][/tex]

4. Distribute \( y \) on the left-hand side:
[tex]\[ yn + y = 2 \][/tex]

5. Isolate \( n \): Subtract \( y \) from both sides to get:
[tex]\[ yn = 2 - y \][/tex]

6. Solve for \( n \): Divide both sides by \( y \):
[tex]\[ n = \frac{2 - y}{y} \][/tex]

Thus, the inverse function, expressed as \( n \) in terms of \( y \), is:
[tex]\[ f^{-1}(y) = \frac{2 - y}{y} \][/tex]

So the inverse of the function \( \frac{2}{n+1} \) is:
[tex]\[ \frac{2 - y}{y} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.