Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's approach this step-by-step.
Given the expression:
[tex]\[ -\frac{1}{(4t-7)^2} \][/tex]
### Step 1: Identify the Inverse
The inverse of a function \( f(x) \) is denoted as \( f^{-1}(x) \) and is the function that "reverses" the effect of \( f(x) \).
If we have an expression \( -\frac{1}{(4t-7)^2} \), we are looking to find \( f^{-1}(x) \).
However, here we are asked to use inverse notation on the mathematical operation itself. Hence, we need to treat \(-\frac{1}{(4t-7)^2}\) as a function and find its multiplicative inverse.
### Step 2: Express the Inverse
The multiplicative inverse (or simply the inverse in the context of division) of a function \( f(t) \) is given by \( \frac{1}{f(t)} \).
Therefore, for the function:
[tex]\[ f(t) = -\frac{1}{(4t-7)^2} \][/tex]
The inverse function (multiplicative inverse) would be:
[tex]\[ \frac{1}{-\frac{1}{(4t-7)^2}} = - (4t-7)^2 \][/tex]
### Step 3: Simplify the Inverse Expression
After taking the inverse, we simplify the expression if possible.
[tex]\[ -\left(4t-7\right)^2 \][/tex]
This is already in its simplest form.
### Conclusion
Hence, the inverse notation of the given expression \(-\frac{1}{(4t-7)^2}\) is simply:
[tex]\[ -(4t-7)^2 \][/tex]
Given the expression:
[tex]\[ -\frac{1}{(4t-7)^2} \][/tex]
### Step 1: Identify the Inverse
The inverse of a function \( f(x) \) is denoted as \( f^{-1}(x) \) and is the function that "reverses" the effect of \( f(x) \).
If we have an expression \( -\frac{1}{(4t-7)^2} \), we are looking to find \( f^{-1}(x) \).
However, here we are asked to use inverse notation on the mathematical operation itself. Hence, we need to treat \(-\frac{1}{(4t-7)^2}\) as a function and find its multiplicative inverse.
### Step 2: Express the Inverse
The multiplicative inverse (or simply the inverse in the context of division) of a function \( f(t) \) is given by \( \frac{1}{f(t)} \).
Therefore, for the function:
[tex]\[ f(t) = -\frac{1}{(4t-7)^2} \][/tex]
The inverse function (multiplicative inverse) would be:
[tex]\[ \frac{1}{-\frac{1}{(4t-7)^2}} = - (4t-7)^2 \][/tex]
### Step 3: Simplify the Inverse Expression
After taking the inverse, we simplify the expression if possible.
[tex]\[ -\left(4t-7\right)^2 \][/tex]
This is already in its simplest form.
### Conclusion
Hence, the inverse notation of the given expression \(-\frac{1}{(4t-7)^2}\) is simply:
[tex]\[ -(4t-7)^2 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.