Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let’s walk through the step-by-step process required to transform the ordered pair (-2, 4) to (-4, 7) and then another transformation to a final point.
### Step 1: Initial Ordered Pair
We start with the ordered pair (-2, 4).
### Step 2: Translation Transformation
To transform this point, apply a translation. A translation shifts a point by adding a vector to it. Here, we can use the translation vector (-2, 3).
- The translation vector is (-2, 3).
Applying this translation to the initial point (-2, 4):
[tex]\[ \text{Translated point} = (-2 + (-2), 4 + 3) = (-4, 7) \][/tex]
### Step 3: Scaling Transformation
Next, we apply a scaling transformation. Scaling adjusts the coordinates by multiplying them by a scalar value. Here, we use a scaling factor of 2.
Applying this scaling to the translated point (-4, 7):
- Scaling factor is 2.
[tex]\[ \text{Scaled point} = (-4 \times 2, 7 \times 2) = (-8, 14) \][/tex]
### Step 4: Identifying the Final Point
The final point after the composite transformation is (-8, 14).
So, the example of a composite transformation that could transform the ordered pair (-2, 4) involves first applying a translation by vector (-2, 3) to get (-4, 7) and then scaling this result by a factor of 2 to get (-8, 14).
### Step 1: Initial Ordered Pair
We start with the ordered pair (-2, 4).
### Step 2: Translation Transformation
To transform this point, apply a translation. A translation shifts a point by adding a vector to it. Here, we can use the translation vector (-2, 3).
- The translation vector is (-2, 3).
Applying this translation to the initial point (-2, 4):
[tex]\[ \text{Translated point} = (-2 + (-2), 4 + 3) = (-4, 7) \][/tex]
### Step 3: Scaling Transformation
Next, we apply a scaling transformation. Scaling adjusts the coordinates by multiplying them by a scalar value. Here, we use a scaling factor of 2.
Applying this scaling to the translated point (-4, 7):
- Scaling factor is 2.
[tex]\[ \text{Scaled point} = (-4 \times 2, 7 \times 2) = (-8, 14) \][/tex]
### Step 4: Identifying the Final Point
The final point after the composite transformation is (-8, 14).
So, the example of a composite transformation that could transform the ordered pair (-2, 4) involves first applying a translation by vector (-2, 3) to get (-4, 7) and then scaling this result by a factor of 2 to get (-8, 14).
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.