Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we will be using the concept of cumulative binomial probability, where we are interested in the probability of getting at most \( x \) successes in \( n \) independent trials with a success probability \( p \).
Given:
- Number of trials (\( n \)) = 9
- Probability of success (\( p \)) in a single trial = 0.2
- Number of successes (\( x \leq 3 \)).
The formula for the binomial probability of exactly \( k \) successes in \( n \) trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \][/tex]
Where \( \binom{n}{k} \) is the binomial coefficient calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k! (n - k)!} \][/tex]
To find the cumulative probability \( P(X \leq 3) \), we need to sum the probabilities of getting 0, 1, 2, and 3 successes:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Calculating each term:
1. For \( k = 0 \):
[tex]\[ P(X = 0) = \binom{9}{0} (0.2)^0 (0.8)^9 \][/tex]
2. For \( k = 1 \):
[tex]\[ P(X = 1) = \binom{9}{1} (0.2)^1 (0.8)^8 \][/tex]
3. For \( k = 2 \):
[tex]\[ P(X = 2) = \binom{9}{2} (0.2)^2 (0.8)^7 \][/tex]
4. For \( k = 3 \):
[tex]\[ P(X = 3) = \binom{9}{3} (0.2)^3 (0.8)^6 \][/tex]
Summing these, we get the cumulative probability:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Using these calculations (or equivalent steps) and rounding the cumulative probability to four decimal places, we get:
The probability of [tex]\( x \leq 3 \)[/tex] successes is approximately [tex]\( 0.9144 \)[/tex].
Given:
- Number of trials (\( n \)) = 9
- Probability of success (\( p \)) in a single trial = 0.2
- Number of successes (\( x \leq 3 \)).
The formula for the binomial probability of exactly \( k \) successes in \( n \) trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \][/tex]
Where \( \binom{n}{k} \) is the binomial coefficient calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k! (n - k)!} \][/tex]
To find the cumulative probability \( P(X \leq 3) \), we need to sum the probabilities of getting 0, 1, 2, and 3 successes:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Calculating each term:
1. For \( k = 0 \):
[tex]\[ P(X = 0) = \binom{9}{0} (0.2)^0 (0.8)^9 \][/tex]
2. For \( k = 1 \):
[tex]\[ P(X = 1) = \binom{9}{1} (0.2)^1 (0.8)^8 \][/tex]
3. For \( k = 2 \):
[tex]\[ P(X = 2) = \binom{9}{2} (0.2)^2 (0.8)^7 \][/tex]
4. For \( k = 3 \):
[tex]\[ P(X = 3) = \binom{9}{3} (0.2)^3 (0.8)^6 \][/tex]
Summing these, we get the cumulative probability:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Using these calculations (or equivalent steps) and rounding the cumulative probability to four decimal places, we get:
The probability of [tex]\( x \leq 3 \)[/tex] successes is approximately [tex]\( 0.9144 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.