Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A binomial probability experiment is conducted with the given parameters.

Given:
[tex]\[ n = 9, \ p = 0.2, \ x \leq 3 \][/tex]

The probability of [tex]\( x \leq 3 \)[/tex] successes is [tex]\(\square\)[/tex] (Round to four decimal places as needed).

Sagot :

To solve this problem, we will be using the concept of cumulative binomial probability, where we are interested in the probability of getting at most \( x \) successes in \( n \) independent trials with a success probability \( p \).

Given:
- Number of trials (\( n \)) = 9
- Probability of success (\( p \)) in a single trial = 0.2
- Number of successes (\( x \leq 3 \)).

The formula for the binomial probability of exactly \( k \) successes in \( n \) trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \][/tex]

Where \( \binom{n}{k} \) is the binomial coefficient calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k! (n - k)!} \][/tex]

To find the cumulative probability \( P(X \leq 3) \), we need to sum the probabilities of getting 0, 1, 2, and 3 successes:

[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]

Calculating each term:

1. For \( k = 0 \):
[tex]\[ P(X = 0) = \binom{9}{0} (0.2)^0 (0.8)^9 \][/tex]

2. For \( k = 1 \):
[tex]\[ P(X = 1) = \binom{9}{1} (0.2)^1 (0.8)^8 \][/tex]

3. For \( k = 2 \):
[tex]\[ P(X = 2) = \binom{9}{2} (0.2)^2 (0.8)^7 \][/tex]

4. For \( k = 3 \):
[tex]\[ P(X = 3) = \binom{9}{3} (0.2)^3 (0.8)^6 \][/tex]

Summing these, we get the cumulative probability:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]

Using these calculations (or equivalent steps) and rounding the cumulative probability to four decimal places, we get:

The probability of [tex]\( x \leq 3 \)[/tex] successes is approximately [tex]\( 0.9144 \)[/tex].