Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given system of linear equations using the augmented matrix in row-echelon form:
[tex]\[ \left[\begin{array}{rr|r} 1 & -5 & -7 \\ 0 & 1 & -3 \end{array}\right] \][/tex]
we will use back substitution.
1. Interpret the matrix as a system of equations:
- The first row translates to \( 1x - 5y = -7 \).
- The second row translates to \( 0x + 1y = -3 \), which simplifies to \( y = -3 \).
2. Solve for \( y \) first:
- From the second row, we have \( y = -3 \).
3. Substitute \( y = -3 \) into the first equation to solve for \( x \):
- The first equation is \( x - 5y = -7 \).
- Substitute \( y = -3 \) into this equation:
[tex]\[ x - 5(-3) = -7 \][/tex]
- Simplify the equation:
[tex]\[ x + 15 = -7 \][/tex]
- Solve for \( x \):
[tex]\[ x = -7 - 15 \][/tex]
[tex]\[ x = -22 \][/tex]
Therefore, the solution to the system of linear equations is the ordered pair \((-22, -3)\).
Select the correct choice:
A. There is one solution. The solution set is [tex]\(\{(-22, -3)\}\)[/tex].
[tex]\[ \left[\begin{array}{rr|r} 1 & -5 & -7 \\ 0 & 1 & -3 \end{array}\right] \][/tex]
we will use back substitution.
1. Interpret the matrix as a system of equations:
- The first row translates to \( 1x - 5y = -7 \).
- The second row translates to \( 0x + 1y = -3 \), which simplifies to \( y = -3 \).
2. Solve for \( y \) first:
- From the second row, we have \( y = -3 \).
3. Substitute \( y = -3 \) into the first equation to solve for \( x \):
- The first equation is \( x - 5y = -7 \).
- Substitute \( y = -3 \) into this equation:
[tex]\[ x - 5(-3) = -7 \][/tex]
- Simplify the equation:
[tex]\[ x + 15 = -7 \][/tex]
- Solve for \( x \):
[tex]\[ x = -7 - 15 \][/tex]
[tex]\[ x = -22 \][/tex]
Therefore, the solution to the system of linear equations is the ordered pair \((-22, -3)\).
Select the correct choice:
A. There is one solution. The solution set is [tex]\(\{(-22, -3)\}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.