Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the given system of linear equations using the augmented matrix in row-echelon form:
[tex]\[ \left[\begin{array}{rr|r} 1 & -5 & -7 \\ 0 & 1 & -3 \end{array}\right] \][/tex]
we will use back substitution.
1. Interpret the matrix as a system of equations:
- The first row translates to \( 1x - 5y = -7 \).
- The second row translates to \( 0x + 1y = -3 \), which simplifies to \( y = -3 \).
2. Solve for \( y \) first:
- From the second row, we have \( y = -3 \).
3. Substitute \( y = -3 \) into the first equation to solve for \( x \):
- The first equation is \( x - 5y = -7 \).
- Substitute \( y = -3 \) into this equation:
[tex]\[ x - 5(-3) = -7 \][/tex]
- Simplify the equation:
[tex]\[ x + 15 = -7 \][/tex]
- Solve for \( x \):
[tex]\[ x = -7 - 15 \][/tex]
[tex]\[ x = -22 \][/tex]
Therefore, the solution to the system of linear equations is the ordered pair \((-22, -3)\).
Select the correct choice:
A. There is one solution. The solution set is [tex]\(\{(-22, -3)\}\)[/tex].
[tex]\[ \left[\begin{array}{rr|r} 1 & -5 & -7 \\ 0 & 1 & -3 \end{array}\right] \][/tex]
we will use back substitution.
1. Interpret the matrix as a system of equations:
- The first row translates to \( 1x - 5y = -7 \).
- The second row translates to \( 0x + 1y = -3 \), which simplifies to \( y = -3 \).
2. Solve for \( y \) first:
- From the second row, we have \( y = -3 \).
3. Substitute \( y = -3 \) into the first equation to solve for \( x \):
- The first equation is \( x - 5y = -7 \).
- Substitute \( y = -3 \) into this equation:
[tex]\[ x - 5(-3) = -7 \][/tex]
- Simplify the equation:
[tex]\[ x + 15 = -7 \][/tex]
- Solve for \( x \):
[tex]\[ x = -7 - 15 \][/tex]
[tex]\[ x = -22 \][/tex]
Therefore, the solution to the system of linear equations is the ordered pair \((-22, -3)\).
Select the correct choice:
A. There is one solution. The solution set is [tex]\(\{(-22, -3)\}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.